References
1. Tereshchenko V.P., Sennikov S.V. Tumor xenografts as a model for preclinical trials of genetically modified cell preparations. Immunologiya. 2021; 42 (6): 730–41. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-730-741 (in Russian)
2. Zhu Y., Huang W., Wu Y., Jia L., Li Y., Chen R., Guo L., Chen Q. Establishment of a patient-derived xenotransplantation animal model for small cell lung cancer and drug resistance model. Zhongguo Fei Ai Za Zhi. 2019; 22 (1): 6–14. Chinese. DOI: https://doi.org/10.3779/j.issn.1009-3419.2019.01.03
3. Mahmoudian R.A., Farshchian M., Abbaszadegan M.R. Genetically engineered mouse models of esophageal cancer. Exp Cell Res. 2021; 406 (2): 112757. DOI: https://doi.org/10.1016/j.yexcr.2021.112757
4. Xing J., Ding P., Wan X., Xu G., Mao Y., Sang X., Du S., Yang H. Application and progress of cultured models of gallbladder carcinoma. J Clin Transl Hepatol. 2023; 11 (3): 695–704. DOI: https://doi.org/10.14218/JCTH.2022.00351
5. Nunes A.S., Barros A.S., Costa E.C., Moreira A.F., Correia I.J. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng. 2019; 116 (1): 206–26. DOI: https://doi.org/10.1002/bit.26845
6. Barroca C.B., Della Santa G., Suchecki D., García-Cairasco N., Umeoka E.H. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev. 2022; 40: 104771. DOI: https://doi.org/10.1016/j.neubiorev.2022.104771
7. Lallo A., Schenk M.W., Frese K.K., Blackhall F., Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res. 2017; 6 (4): 397–408. DOI: https://doi.org/10.21037/tlcr.2017.08.01
8. Liu Y., Wu W., Cai C., Zhang H., Shen H., Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther. 2023; 8 (1): 160. DOI: https://doi.org/10.1038/s41392-023-01419-2
9. Zeng M., Ruan Z., Tang J., Liu M., Hu C., Fan P., Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int. 2023; 23 (1): 120. DOI: https://doi.org/10.1186/s12935-023-02953-3
10. Neto Í., Rocha J., Gaspar M.M., Reis C.P. Experimental murine models for colorectal cancer research. Cancers (Basel). 2023; 15 (9): 2570. DOI: https://doi.org/10.3390/cancers15092570
11. Suzuki M., Cheung N.K. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets. 2015; 19 (3): 349–62. DOI: https://doi.org/10.1517/14728222.2014.986459
12. Giesen E., Jilaveanu L.B., Parisi F., Kluger Y., Camp R.L., Kluger H.M. NY-ESO-1 as a potential immunotherapeutic target in renal cell carcinoma. Oncotarget. 2014; 5 (14): 5209–17. DOI: https://doi.org/10.18632/oncotarget.2101
13. Ishihara M., Kageyama S., Miyahara Y., Ishikawa T., Ueda S., Soga N., Naota H., Mukai K., Harada N., Ikeda H., Shiku H. MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours. BMC Cancer. 2020; 20 (1): 606. DOI: https://doi.org/10.1186/s12885-020-07098-4
14. Mancikova V., Smida M. Current State of CAR T-Cell Therapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2021; 22 (11): 5536. DOI: https://doi.org/10.3390/ijms22115536
15. Filippova J.G., Kuznecova M.S., Shevchenko J.A., Tereshchenko V.P., Fisher M.S., Kurilin V.V., Pashkina E.A., Akahori Y., Shiku H., Sennikov S.V. Phenotype and effector functions of GD2-specific CAR-T cells in vitro. Immunologiya. 2022; 43 (5): 525–35. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-525-535 (in Russian)