Intracellular signaling pathway inhibitors suppress inflammatory response induced by synergistically acting bacterial substances

Abstract

Introduction. Combined activation of NOD-like and Toll-like receptors of innate immune cells is a potent pro-inflammatory stimulus that may underlie the systemic inflammatory response in bacterial sepsis.

Aim – to evaluate the possibility to suppress pro-inflammatory cytokine production by macrophages activated with NOD1 and TLR4 agonist combination using inhibitors of NF-κB-dependent and mitogen-activated protein kinase (MAPK)-dependent signaling pathways.

Material and methods. Macrophages generated from healthy donor monocytes were stimulated with NOD1 and TLR4 agonists separately or simultaneously. The activity of NF-κB-dependent and MAPK-dependent signaling pathways was suppressed using low-molecular-weight kinase inhibitors that were added before or after commencement of cell activation. As read-outs, we measured mRNA expression of pro-inflammatory cytokines TNF, IL6, IL12B and IL23A using RT-PCR as well as secretion of TNF, IL-6 and IL-23 using ELISA.

Results. Inhibition of NF-κB-dependent and MAPK-dependent signaling pathways allowed to prevent or interrupt expression and production of TNF, IL-6 and IL-23 by macrophages activated by a potent pro-inflammatory stimulus, a NOD1 + TLR4 agonist combination. Most effective was simultaneous inhibition of both signaling pathways. We also show contribution of NF-κB-dependent and MAPK-dependent signaling pathways to synergistic enhancement of IL12B gene expression.

Conclusions. These results obtained can be utilized when developing novel approaches to anti-inflammatory therapy of severe bacterial infections.

Keywords:macrophages; NOD1; TLR4; muramyl peptides; lipopolysaccharide; mitogen-activated protein kinases; nuclear factor-κB; inhibitors

For citation: Masyutina A.M., Murugin V.V., Pashenkov M.V. Intracellular signaling pathway inhibitors suppress inflammatory response induced by synergistically acting bacterial substances. Immunologiya. 2024; 45 (1): 21–32. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-21-32 (in Russian)

Funding. This work was supported by the Russian Science Foundation grant No. 21-15-00211.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Conducting experiments and analysing results – Masyutina A.M., Murugin V.V.; designing experiments, analysing results and writing the article – Pashenkov M.V.

References

1. Global report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. World Health Organization 2020. URL: https://apps.who.int/iris/bitstream/handle/10665/334216/9789240010789-eng.pdf

2. Lei S., Li X., Zhao H., Xie Y., Li J. Prevalence of sepsis among adults in China: A systematic review and meta-analysis. Front Public Heal. 2022; 10: 977094. DOI: https://doi.org/10.3389/FPUBH.2022.977094

3. Park J.M., Greten F.R., Li Z.W., Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science. 2002; 297 (5589): 2048–51. DOI: https://doi.org/10.1126/SCIENCE.1073163

4. Zhou H., Monack D.M., Kayagaki N., Wertz I., Yin J., Wolf B., Dixit V.M. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med. 2005; 202 (10): 1327–32. DOI: https://doi.org/10.1084/JEM.20051194

5. Lei X., Dong X., Ma R., Wang W., Xiao X., Tian Z., Wang C., Wang Y., Li L., Ren L., Guo F., Zhao Z., Zhou Z., Xiang Z., Wang J. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020; 11: 3810. DOI: https://doi.org/10.1038/s41467-020-17665-9

6. Fukao T. Immune system paralysis by anthrax lethal toxin: The roles of innate and adaptive immunity. Lancet Infect Dis. 2004; 4 (3): 166–70. DOI: https://doi.org/10.1016/S1473-3099(04)00940-5

7. Nau R., Eiffert H. Minimizing the release of proinflammatory and toxic bacterial products within the host: a promising approach to improve outcome in life-threatening infections. FEMS Immunol. Med Microbiol. 2005; 44 (1): 1–16. DOI: https://doi.org/10.1016/J.FEMSIM.2005.01.001

8. Cecconi M., Evans L., Levy M., Rhodes A. Sepsis and septic shock. Lancet. 2018; 392: 75–87. DOI: https://doi.org/10.1016/S0140-6736(18)30696-2

9. Coburn J., Garcia B., Hu L.T., Jewett M.W., Kraiczy P., Norris S.J., Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol. 2021; 42: 473–518. DOI: https://doi.org/10.21775/CIMB.042.473

10. Beutler B., Milsark I.W., Cerami A.C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985; 229 (4716): 869–71. DOI: https://doi.org/10.1126/SCIENCE.3895437

11. Oh S.J., Kim J.H., Chung D.H. NOD2-mediated Suppression of CD55 on Neutrophils Enhances C5a Generation During Polymicrobial Sepsis. PLoS Pathog. 2013; 9: e1003351. DOI: https://doi.org/10.1371/journal.ppat.1003351

12. Li H., Han W., Polosukhin V., Yull F.E., Segal B.H., Xie C.M., Blackwell T.S. NF-κB inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators Inflamm. 2013; 2013: 503213. DOI: https://doi.org/10.1155/2013/503213

13. Long B., Koyfman A. Controversies in Corticosteroid use for Sepsis. J Emerg Med. 2017; 53 (5): 653–61. DOI: https://doi.org/10.1016/J.JEMERMED.2017.05.024

14. Budikhina A.S., Murugina N.E., Maximchik P. V., Dagil Y.A., Nikolaeva A.M., Balyasova L.S., Murugin V.V., Selezneva E.M., Pashchenkova Y.G., Chkadua G.Z., Pinegin B.V., Pashenkov M.V. Interplay between NOD1 and TLR4 receptors in macrophages: nonsynergistic activation of signaling pathways results in synergistic induction of proinflammatory gene expression. J Immunol. 2021; 206 (9): 2206–20. DOI: https://doi.org/10.4049/JIMMUNOL.2000692

15. Fritz J.H., Girardin S.E., Fitting C., Werts C., Mengin-Lecreulx D., Caroff M., Cavaillon J.M., Philpott D.J., Adib-Conquy M. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol. 2005; 35 (8): 2459–70. DOI: https://doi.org/10.1002/eji.200526286

16. van Heel D.A., Ghosh S., Butler M., Hunt K., Foxwell B.M.J., Mengin-Lecreulx D., Playford R.J. Synergistic enhancement of Toll-like receptor responses by NOD1 activation. Eur J Immunol. 2005; 35 (8): 2471–6. DOI: https://doi.org/10.1002/eji.200526296

17. Pichugin A.V., Bagaev A.V., Lebedeva E.S., Chulkina M., Ataullakhanov R.I. Synergistic cytokine production by murine dendritic cells in response to their simultaneous activation with pairs of agonists of different innate immune receptors. Immunologiya. 2017; 38 (2): 118–23. DOI: https://doi.org/10.18821/0206-4952-2017-38-2-118-123 (in Russian)

18. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science. 1998; 282 (5396): 2085–8. DOI: https://doi.org/10.1126/science.282.5396.2085

19. Girardin S.E., Travassos L.H., Hervé M., Blanot D., Boneca I.G., Philpott D.J., Sansonetti P.J., Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003; 278 (43): 41702–8. DOI: https://doi.org/10.1074/jbc.M307198200

20. Masyutina A.M., Pashenkov M.V. Transcriptional response of macrophages to combined stimulation of a NOD-like and a Toll-like receptor. Immunologiya. 2023; 44 (4): 408–18. DOI: https://doi.org/10.33029/0206-4952-2023-44-4-408-418 (in Russian)

21. Takada H., Galanos C. Enhancement of endotoxin lethality and generation of anaphylactoid reactions by lipopolysaccharides in muramyl-dipeptide-treated mice. Infect Immun. 1987; 55 (2): 409–13. DOI: https://doi.org/10.1128/iai.55.2.409-413.1987

22. Murch O., Abdelrahman M., Kapoor A., Thiemermann C. Muramyl dipeptide enhances the response to endotoxin to cause multiple organ injury in the anesthetized rat. Shock. 2008; 29 (3): 388–394. DOI: https://doi.org/10.1097/SHK.0b013e3181453e59

23. Falvo J. V., Tsytsykova A. V., Goldfeld A.E. Transcriptional control of the TNF gene. Curr Dir Autoimmun. 2010; 11: 27. DOI: https://doi.org/10.1159/000289196

24. Litvak V., Ramsey S.A., Rust A.G., Zak D.E., Kennedy K.A., Lampano A.E., Nykter M., Shmulevich I., Aderem A. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol. 2009; 10 (4): 437–43. DOI: https://doi.org/10.1038/ni.1721

25. Gri G., Savio D., Trinchieri G., Ma X. Synergistic regulation of the human interleukin-12 p40 promoter by NFkappaB and Ets transcription factors in Epstein-Barr virus-transformed B cells and macrophages. J Biol Chem. 1998; 273 (11): 6431–8. DOI: https://doi.org/10.1074/JBC.273.11.6431

26. Tukhvatulin A., Dzharullaeva A.S., Tukhvatulina N.M., Shcheblyakov D.V., Shmarov M.M., Dolzhikova I.V., Stanhope-Baker P., Naroditsky B.S., Gudkov A.V., Logunov D.Y., Gintsburg A.L. Powerful complex immunoadjuvant based on synergistic effect of combined TLR4 and NOD2 activation significantly enhances magnitude of humoral and cellular adaptive immune responses. PLoS One. 2016; 11 (5): e0155650. DOI: https://doi.org/10.1371/journal.pone.0155650

27. Seo J., Koçak D.D., Bartelt L.C., Williams C.A., Barrera A., Gersbach C.A., Reddy T.E. AP-1 subunits converge promiscuously at enhancers to potentiate transcription. Genome Res. 2021; 31 (4): 538–50. DOI: https://doi.org/10.1101/GR.267898.120

28. Waskiewicz A.J., Flynn A., Proud C.G., Cooper J.A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997; 16 (8): 1909–20. DOI: https://doi.org/10.1093/emboj/16.8.1909

29. Pashenkov M.V., Balyasova L.S., Dagil Y.A., Pinegin B.V. The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor. J Immunol. 2017; 198 (4): 1638–48. DOI: https://doi.org/10.4049/jimmunol.1600467

30. Duffy J.P., Harrington E.M., Salituro F.G., Cochran J.E., Green J., Gao H., Bemis G., Evindar G., Galullo V.P., Ford P.J., Germann U.A., Wilson K.P., Bellon S.F., Chen G., Taslimi P., Jones P., Huang C., Pazhanisamy S., Wang Y.M., Murcko M.A., Su M.S.S. The discovery of VX-745: A novel and selective p38α kinase inhibitor. ACS Med Chem Lett. 2011; 2 (10): 758. DOI: https://doi.org/10.1021/ML2001455

31. Sommers C.D., Thompson J.M., Guzova J.A., Bonar S.L., Rader R.K., Mathialagan S., Venkatraman N., Holway V.W., Kahn L.E., Hu G., Garner D.S., Huang H.C., Chiang P.C., Schindler J.F., Hu Y., Meyer D.M., Kishore N.N. Novel tight-binding inhibitory factor-κB kinase (IKK-2) inhibitors demonstrate target-specific anti-inflammatory activities in cellular assays and following oral and local delivery in an in vivo model of airway inflammation. J Pharmacol Exp Ther. 2009; 330 (2): 377–88. DOI: https://doi.org/10.1124/JPET.108.147538

32. Sha T., Sunamoto M., Kitazaki T., Sato J., Ii M., Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol. 2007; 571 (2–3): 231–9. DOI: https://doi.org/10.1016/J.EJPHAR.2007.06.027

33. Rice T.W., Wheeler A.P., Bernard G.R., Vincent J.L., Angus D.C., Aikawa N., Demeyer I., Sainati S., Amlot N., Cao C., Ii M., Matsuda H., Mouri K., Cohen Jon. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 2010; 38 (8): 1685–94. DOI: https://doi.org/10.1097/CCM.0b013e3181e7c5c9

34. Opal S.M., Laterre P.F., Francois B., LaRosa S.P., Angus D.C., Mira J.P. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA. 2013; 309 (11): 1154–62. DOI: https://doi.org/10.1001/jama.2013.2194

35. Pashenkov M.V., Murugina N.E., Budikhina A.S., Pinegin B.V. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications. J Leukoc. Biol. 2019; 105 (4): 669–80. DOI: https://doi.org/10.1002/JLB.2RU0718-290R

36. Lanna A., Gomes D.C.O., Muller-Durovic B., McDonnell T., Escors D., Gilroy D.W., Lee J.H., Karin M., Akbar A.N. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017; 18 (3): 354–63. DOI: https://doi.org/10.1038/NI.3665

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»