Effect of leu-enkephalin analogue on the content of pro- and anti-inflammatory cytokines in the colonic wall in experimental ulcerative colitis

Abstract

Introduction. The development of ulcerative colitis is associated with impaired immune homeostasis in the colonic wall, activation of CD8+IL-17+-cells, increased production of pro-inflammatory and impaired secretion of anti-inflammatory cytokines. The formation of immune inflammation leads to the development of infiltrates and ulcers, as well as crypts destruction. Considering the low efficiency of existing methods for the treatment of ulcerative colitis, the search for new treatments for inflammatory colonic diseases is an urgent task. Investigated leu-enkephalin analogue has a unique combination of pharmacological effects, including immunomodulatory effect.

The aim of study – investigation of leu-enkephalin analogue (Tyr-D-Ala-Gly-Phe-Leu-Arg) effect on the content of pro- and anti-inflammatory cytokines in the colonic wall in mice with experimental ulcerative colitis.

Material and methods. Ulcerative colitis in Balb/c mice was simulated by replacing drinking water with a 5 % solution of dextran sodium sulfate in boiled water for 5 days. On the 5th, 7th and 28th days of the experiment, the content of IL-1β, IL-4, IL-6, IL-10 and IL-17 was measured in the homogenate of the medial section of the colon. The leu-enkephalin analogue was administered subcutaneously at a dose of 100 mcg/kg for 7 days.

Results. An increase in the content of IL-1β, IL-6, IL-10 and IL-17, as well as a decrease in the concentration of IL-4 in the colonic wall of mice of the control group with ulcerative colitis on the 5th and 7th days of the experiment was established. In chronic ulcerative colitis, only the concentration of IL-6 was significantly higher by 2.5 times than in naïve mice. The administration of leu-enkephalin analogue had an immunomodulatory effect: the content of proinflammatory cytokines decreased, while the content of Th2-cytokines increased during the acute period of the disease. In chronic ulcerative colitis, the administration of investigated peptide caused a decrease in the concentration of IL-6 and an increase in the content of IL-10 in the colonic wall.

Conclusion. The mechanism of leu-enkephalin analogue action on the content of inflammatory cytokines is apparently associated with the activation of opioid μ-receptors, which are widely present on the mononuclear cells of the colon wall, and whose expression increases in colonic inflammation development.

Keywords:ulcerative colitis; interleukins; leu-enkephalin analogue; opioid μ-receptors

For citation: Lyashev A.Yu., Mal G.S. Effect of leu-enkephalin analogue on the content of pro- and anti-inflammatory cytokines in the colonic wall in experimental ulcerative colitis. Immunologiya. 2024; 45 (1): 50–7. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-50-57 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Concept and design of the study – Lyashev A.Yu., Mal G.S.; collection and processing of the material – Lyashev A.Yu.; statistical analysis – Lyashev A.Yu.; writing of the text – Lyashev A.Yu., Mal G.S.; text editing – Mal G.S.

References

1. Du L., Ha C. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol. Clin. North Amer. 2020; 49 (4): 643–54. DOI: https://doi.org/10.1016/j.gtc.2020.07.005

2. Ordás I., Eckmann L., Talamini M., Baumgart D.C., Sandborn W.J. Ulcerative colitis. Lancet. 2012; 380 (9853): 1606–19. DOI: https://doi.org/10.1016/S0140-6736(12)60150-0

3. Chulkina M.M., Pichugin A.V., Ataullaukhanov R.I. Therapeutic effect of the immunomodulating peptide TEKKRRETVEREKE in the experimental model of induced ulcerative colitis in mice. Immunologiya. 2019; 40 (1): 15–26. DOI: https://doi.org/10.24411/0206-4952-2019-11002 (in Russian)

4. Rawat M., Nighot M., Al-Sadi R., Gupta Y., Viszwapriya D., Yochum G., Koltun W., Ma T.Y. IL1β increases intestinal tight junction permeability by upregulation of MIR200C-3p, which degrades occluding mRNA. Gastroenterol. 2020; 159 (4): 1375–89. DOI: https://doi.org/10.1053/j.gastro.2020.06.038

5. Jialing L., Yangyang G., Jing Z., Xiaoyi T., Ping W., Liwei S., Simin C. Changes in serum inflammatory cytokine levels and intestinal flora in a selfhealing dextran sodium sulfate-induced ulcerative colitis murine model. Life Sci. 2020; 263: 118587. DOI: https://doi.org/10.1016/j.lfs.2020.118587

6. Goulart R. de A., Barbalho S.M., Lima V.M., Souza G.A., Mathias J.N., Araujo A.C., Rubira C.J., Buchaim R.L., Buchaim D.V., de Carvalho A.C.A., Guiger E.L. Effects of the use of Curcumin on ulcerative colitis and Crohn’n disease. J. Med. Food. 2020; 24 (7): 675–85. DOI: https://doi.org/10.1089/jmf.2020.0129

7. Tatiya-Aphiradee N., Chatuphonprasert W., Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J. Bas. Clin. Physiol. Pharmacol. 2018; 30 (1): 1–10. DOI: https://doi.org/10.1515/jbcpp-2018-0036

8. Schoultz I., Keita A.V. Cellular and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier function. Cells. 2019; 8 (2): 193–216. DOI: https://doi.org/10.3390/cells8020193

9. Iwakura Y., Ishigame H., Saijo S., Nakae S. Functional specialization of interleukin17 family members. Immunity. 2011; 34 (2): 149–62. DOI: https://doi.org/10.1016/j.immuni.2011.02.012

10. Lin H., Zhang W., Jiang X., Chen R., Huang X., Huang Z. Total glucosides of paeony ameliorates TNBS-induced colitis by modulating differentiation of Th17/Treg cells and the secretion of cytokines. Mol. Med. Rep. 2017; 16 (6): 8265–76. DOI: https://doi/org/ https://doi.org/10.3892/mmr.2017.7598

11. Nishida Y., Hosomi S., Watanabe K., Watanabe K., Yukawa T., Otani K., Nagami Y., Tanaka F., Taira K., Kamata N., Yamagami H., Tanigawa T., Watanabe T., Fujiwara Y. Serum interleukin-6 level is associated with response to infliximab in ulcerative colitis. Scand. J. Gastroenterol. 2018; 53 (5): 579–85. DOI: https://doi.org/10.1080/00365521.2017.1403647

12. Wang G., Liu Y., Yang Y., Xia Y., Lai P.F.-H., Ai L. The ameliorative effect of a Lactobacillus strain with good adhesion ability against dextran sulfate sodium-induced murine colitis. Food & Func. 2019; 10 (1): 397–409. DOI: https://doi.org/10.1039/c8fo01453a

13. Saez-Lara M.J., Gomez-Llorente -C., Plaza-Diaz J., Gil H. The role of probiotic lactic bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. Biomed. Res. Int. 2015; 505878. DOI: https://doi.org/10.1155/2015/505878

14. Seo S., Shin J.-S., Lee W.-S., Rhee J.K., Cho C-W., Hong H.D., Lee K.T. Anti-colitis effect of Lactobaccilus sakei K040706 via suppression of inflammatory responses in dextran sulfate sodium-induced colitis mice model. J. Func. Foods. 2017; 29: 256–68. DOI: https://doi.org/10.1016/j.jff.2016.12.045

15. Braat H., Peppelenbosch M.P., Hommes D.W. Interleukin-10-based therapy for inflammatory bowel disease. Exp. Opin. Biol. Ther. 2003; 3 (5): 725–31. DOI: https://doi.org/10.1517/14712598.3.5.725

16. Katsannos K.H., Papadakis K.A. Inflammation bowel disease: Updates on Molecular targets for biologics. Gut Liver. 2017; 11 (4): 455–63. DOI: https://doi.org/10.5009/gn116308

17. Zhou X., Li W., Wang S., Zhang P., Wang O., Xiao J., Zang C., Zhang X., Xu X., Xue S., Hui L., Ji H., Wei B., Wang H. YAP Aggravates Inflammatory Bowel Disease by Regulating M1/M2 Macrophage Polarization and Gut Microbial Homeostasis. Cell Rep. 2019; 27 (4): 1176–89. DOI: https://doi.org/10.1016/j.celrep.2019.03.028

18. Zolotova N.A., Diatroptov M.E., Chernysheva M.B., Khochansky D.N., Kirukhin S.O., Postovalova E.A. Cytokines in colon of C57Bl/6 male mice with acute and chronic dextran-induced colitis. Tsitok. Vospal. 2015; 14 (2): 70–6. (in Russian)

19. Bulgakov S.A. Peptide therapeutics in pancreatology. Rus. J. Evid.-bas. Gastroenterol. 2018; 7 (4): 30–4. DOI: https://doi.org/10.17116/dokgastro2018704130 (in Russian)

20. Platonova V.V., Sevbitov A.V., Shakaryants A.A., Dorofeev A.E. The experimental clinical substantiation of treatment of patients with odontogenic phlegmon of maxillofacial area using Dаlargin in complex therapy. Klin. Lab. Diagn. 2018; 63 (5): 293–6. DOI: https://doi.org/10.18821/0869-2084-2018-63-5-293-296 (in Russian)

21. Khomyakova T.I., Zolotova N.A., Khochanskiy D.N., Khomyakov Yu.N. The modelling of acute and chronic colitis in mice. Lechen. Profil. 2013; 7 (3): 148–59. (in Russian)

22. Lishmanov Yu.B., Maslov L.N., Naryzhnaya N.V., Pei J.-M., Kolar F., Zhang Y., Portnichenko A.G., Wang H. Endogenous opioid system as a mediator of acute and long-term adaptation to stress. Prospects for clinical use of opioid peptides. Annals RAMS. 2012; 6: 73–82. (in Russian)

23. Lipatov V.A., Kryukov A.A., Severinov D.A., Saakyan A.R. Ethical and legal aspects of in vivo experimental biomedical research. Part I. I.P. Pavlov Rus. Med. Biol. Herald. 2019; 27 (1): 80–92. DOI: https://doi.org/10.23888/PAVLOVJ201927180-92 (in Russian)

24. Lipatov V.A., Kryukov A.A., Severinov D.A., Saakyan A.R. Ethical and legal aspects of in vivo experimental biomedical research of the conduct. Part II. I.P. Pavlov Rus. Med. Biol. Herald. 2019; 27 (2): 245–57. DOI: https://doi.org/10.23888/PAVLOVJ2019272245-257 (in Russian)

25. Gao Y., Postovalova E.A., Dobrynina M.T., Makarova O.V. Sex differences of subpopulation composition of lymphocytes in the peripheral blood, mesenteric lymph nodes and colon in experimental chronic ulcerative colitis. Immunologiya. 2018; 39 (1): 32–8. DOI: https://doi.org/10.18821/0206- 4952-2018-39-1-32-38 (in Russian)

26. Phillippe D., Chakass D., Thuru X., Zerbib P., Tsicopoulos A., Geboes K., Bulois P., Vorng H., Gay J., Colombel J.-F., Desreumaux P., Chamaillard M. Mu opioid receptor expression is increased in inflammatory bowel diseases: implications for homeostatic intestinal inflammation. Gut. 2006; 55: 815–23. DOI: https://doi.org/10.1136/gut.2005.080887

27. Anselmi L., Huynh J., Duraffourd C., Jaramillo I., Vegezzi G., Saccani F., Boschetti E., Brecha N.C., De Giorgio R., Sternini C. Activation of μ opioid receptors modulates inflammation in acute experimental colitis. Neurogastroenterol. Motil. 2015; 27 (4): 509–23. DOI: https://doi.org/10.1111/nmo.12521

28. Basso L., Gamier L., Bessac A., Boue J., Blanpied C., Ctnac N., Laffont S., Dietrich G. T-lymphocyte-derived enkephalins reduce Th1/Th17 colitis and associated pain in mice. J. Gastroenterol. 2018; 53 (2): 215–26. DOI: https://doi.org/10.1007/s00535-017-1341-2

29. Sternini C., Patierno S., Selmer I.S., Kirchgessner A. The opioid system in the gastrointestinal tract. Neurogastroenterol. Motil. 2004; 458: 404–11.

30. Valdez-Morales E., Guerrero-Alba r., Ochoa-Cortes F., Benson J., Spreadbury I., Hurlbut D., Miranda-Morales M., Lomax A.E., Vanner S. Release of endogenous opioids during a chronic IBD model suppresses the excitability of colonic DRG neurons. Neurogastroenterol. Motil. 2013. 25 (1): 39–46. DOI: https://doi.org/10.1111/nmo.12008

31. Owczarek D., Cibor D., Mach T., Ciesla A., Pierzchala-Koziec K., Salapa K., Kusnierz-Cabala B. Met-enkephalins in patients with inflammatory bowel diseases. Adv. Med. Sci. 2011; 56 (2): 158–64. DOI: https://doi.org/10.2478/v10039-011-0051-x

32. Philippe D., Dubuquoy H., Groux H., Brun V., Choui-Mariot M.T.V., Gaveriaux-Ruff C., Colombel J.-F., Kieffer B.I., Desreumaux P. Anti-inflammatory properties of the mu opioid receptor support its use in the treatment of colon inflammation. J. Clin. Invest. 2003; 111 (9): 1329–38. DOI: https://doi.org/10.1172/JCI16750

33. Di Cello J.J., Saito A., Rajasekhar P., Eriksson E.M., McQuade R.M., Nowel C.J., Sebastian B.W., Fichna J., Veldhuis N.A., Canals M., Bunnet N.W., Carbone S.E., Poole D.P. Inflammation-associated changes in DOR expression and function in the mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2018; 315 (4): G544–59. DOI: https://doi.org/10.1152/ajpgi.00025.2018

34. Shouval D.S., Ouahed J., Biswiss A., Goettel J.A., Horwitz B.H., Klein C., Muise A.M., Snapper S.B. Interleukin 10 receptor signaling: master regulatot of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 2014; 122: 177–210. DOI: https://doi.org/10.1016/B978-0-12-800267-4.00005-5

35. Neuman C., Scheffold A., Rutz S. Functions and regulation of T cell-derived interleukin-10. Sem. Immun. 2019; 44: 101344. DOI: https://doi.org/10.1016/j.smim.2019.101344

36. Wang S., Wang J., Ma R., Yang S., Fan T., Cao J., Wang Y., Ma W., Yang W., Wang F., Zang H. IL-10 enhances T cell survival and is associated with faster relapse in patients with inactive ulcerative colitis. Mol. Immunol. 2020; 121: 92–8. DOI: https://doi.org/10.1016/j.molimm.2020.03.001

37.Yoshimoto T. The hunt for the source of primary interleukin-4: how we discovered that natural killer T cells and basophils determine T helper type 2 cell differentiation in vivo. Front. Immunol. 2018; 9: 716. DOI: https://doi.org/10.3389/fimmu.2018.00716

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»