Studies on the immunogenicity of therapeutic proteins: methodological aspects of identifying and studying of the anti-drug antibodies

Abstract

Biotechnological medicines (such as therapeutical proteins) are widely used in medical practice due to their high specificity to factors associated with the pathogenesis of diseases of various origins. However, the development of immune response to therapeutical proteins is big issue because it affects pharmacokinetic and pharmacodynamic profile, safety and efficacy of the drug. The clinical significance of therapeutic proteins immunogenicity mainly depends on its’ mechanisms of development and robustness, as well as specificity and affinity of the anti-drug antibodies (ADA). Identification, quantification and determination of anti-drug antibodies functional activity is the most important objective in drug development process as a key drug safety characteristic. This paper reviews different approaches of the therapeutic proteins immunogenicity assessment, choice of analytical methods for analysis and characterization of ADA during the clinical development process.

Keywords:immunogenicity; anti-drug antibodies; therapeutic proteins; monoclonal antibodies; screening and confirmatory studies; selection and validation of immunological methods; pharmacokinetics, efficacy; safety

For citation: Avdeeva Zh.I., Soldatov A.A., Alpatova N.A., Bondarev V.P., Mosyagin V.D., Korovkin A.S., Merkulov V.A. Studies on the immunogenicity of therapeutic proteins: methodological aspects of identifying and studying of the anti-drug antibodies. Immunologiya. 2024; 45 (1): 91–106. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-91-106 (in Russian)

Funding. The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting 121022000147-4). Open publication of the research results is allowed.

Conflict of interests. The authors declare no conflict of interests.

Authors contribution. The concept and design of the study – Avdeeva Zh.I., Bondarev V.P.; Collection and processing of material – Soldatov A.A., Alpatova N.A., Mosyagin V.D.; Writing the text – Avdeeva Zh.I., Alpatova N.A.; Editing – Korovkin A.S., Merkulov V.A.

References

1. Guideline on immunogenicity testing of therapeutic protein products – developing and validating assays for anti-drug antibody detection. US Department of Health and Human Services, US FDA, Rockville, MD, USA, 2019. URL: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug

2. Guideline on Immunogenicity assessment of therapeutic proteins (EMEA/CHMP/BMWP/14327/2006 Rev 1) Committee for Medicinal Products for Human Use (CHMP) 18 May 2017. URL: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en

3. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use (EMA/CHMP/ BMWP/86289/2010). URL: https://www.ema.europa.eu/en/documents/scientific-guideline/guidelineimmunogenicity-assessment-monoclonal-antibodies-intended-vivo-clinical-use_en.pdf

4. Rules for conducting research on biological medicines of the Eurasian Economic Union (Decision of the Council of the Eurasian Economic Commission No. 89 dated 03.11.2016) (as amended on 07.15.2022). URL: https://docs.eaeunion.org/docs/ru-ru/01411954/cncd_21112016_89 (in Russian)

5. Faraji F., Karjoo Z., Moghaddam M.V., Heidari S., Emameh R.Z., Falak R. Challenges related to the immunogenicity of parenteral recombinant proteins: Underlying mechanisms and new approaches to overcome it. Int Rev Immunol. 2018; 37 (6): 301–15. DOI: https://doi.org/10.1080/08830185.2018.1471139

6. Harding F.A., Stickler M.M., Razo J., DuBridge R.B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010; 2 (3): 256–65. DOI: https://doi.org/10.4161/mabs.2.3.11641

7. van Schouwenburg P.A., Kruithof S., Votsmeier C., van Schie K., Hart M.H., de Jong R N., van Buren E.L., van Ham M., Aarden L., Wolbink G., Wouters D., Rispens T. Functional analysis of the anti-adalimumab response using patient-derived monoclonal antibodies. J Biol Chem. 2014; 289 (50): 34482–88. DOI: https://doi.org/10.1074/jbc.M114.615500

8. Dingman R., Balu-Iyer S.V. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci. 2019; 108 (5): 1637–54. DOI: https://doi.org/10.1016/j.xphs.2018.12.014

9. Vaisman-Mentesh A., Gutierrez-Gonzalez M., DeKosky B.J., Wine Y., The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol. 2020; 11: 1951. DOI: https://doi.org/10.3389/fimmu.2020.01951

10. Avdeeva Z.I., Soldatov A.A., Bondarev V.P., Mosyagin V.D., Merkulov V.A. Factor VIII products: key aspects of development, clinical research and use (part 2). BIOpreparations. Prevention, Diagnosis, Treatment. 2021; 21 (2): 97–107. DOI: https://doi.org/10.30895/2221-996X-2021-21-2-97-107 (in Russian)

11. Soldatov A.A., Avdeeva Zh.I., Medunitsyn N.V., Kryuchkov N.A. Mechanisms of development of an undesirable immune response in the use of biotechnological drugs. Immunologiya. 2017; 38 (5): 271–83. (in Russian)

12.  Avdeeva Zh.I., Soldatov A.A., Bondarev V.P., Merkulov V.A., Medunitsyn N.V. The problems concerned with undesirable immunogenicity of biotechnological medicines (therapeutic proteins). Part 1. Methodological approaches to the evaluation of immunogenicity. Immunologiya. 2019; 40 (3): 51–64. DOI: https://doi.org/10.24411/0206-4952-2019-13006 (In Russian)

13. Avdeeva Zh.I., Soldatov A.A., Mosyagin V.D., Medunitsyn N.V. The problems connected with unwanted immunogenicity of biotechnological medicines (therapeutic proteins). Part 2. Clinical aspects. Immunologiya. 2019; 40 (4): 29–40. DOI: https://doi.org/10.24411/0206-4952-2019-14004 (in Russian)

14. Avdeeva Zh.I., Soldatov A.A., Bondarev V.P., Mosyagin V.D., Merkulov V.A. Problems associated with the manifestation of immunogenicity of biotherapeutic proteins and ways to solve them. Immunologiya. 2021; 42 (6): 706–19. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-706-719 (in Russian)

15. Soldatov A., Avdeeva J., Kryuchkov N., Skosyreva E. Safety concerns of biosimilar hormone products. Current Medical Research & Opinion. 2019; 35 (6): 1003–09.

16. Nuriev R.I., Karaulov A.V., Kisielewski M.V. Novel treatment strategies for patients with cancer: immunotherapeutic approach. Immunologiya. 2017; 38 (1): 39–48. DOI: https://doi.org/10.18821/0206-4952-2017-38-1-39-48 (in Russian)

17. Genetically engineered biological drugs in the treatment of rheumatoid arthritis / ch. ed. Academician E.L. Nasonov. Moscow: IMA-PRESS; 2013. 552 p. (in Russian)

18. Van Stappen Th., Brouwers E., Vermeire S., Gils A. Validation of a sample pretreatment protocol to convert a drug-sensitive into a drug-tolerant anti-infliximab antibody immunoassay. Drug Test Anal. 2017; 9 (2): 243–47. DOI: https://doi.org/10.1002/dta.1968

19. Atiqi S., Hooijberg F., Loeff F.C., RispensT., Wolbink G.J. Immunogenicity of TNF-Inhibitors. Front Immunol. 2020; 11: 312. DOI: https://doi.org/10.3389/fimmu.2020.00312

20. Mire-Sluis A.R., Barrett Y. C., Devanarayan V., Koren E., Liu H., Maia M., Parish T., Scott G., Shankar G., Shores E., Swanson S.J., Taniguchi G., Wierda D., Zuckerman L.A. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004; 289 (1-2): 1–16. DOI: https://doi.org/10.1016/j.jim.2004.06.002

21. Gupta S., Indelicato S.R., Jethwa V., Kawabata T., Kelley M., Mire-Sluis A.R, Richards S. M, Rup B., Shores E., Swanson S.J, Wakshull E. Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J Immunol Methods. 2007; 321 (1-2): 1–18. DOI: https://doi.org/10.1016/j.jim.2006.12.004

22. Gupta, S., Devanarayan V., Finco D., Gunn G.R., Kirshner S., Richards S., Rup B., Song A., Subramanyam M. Recommendations for the validation of cell-based assays used for the detection of neutralizing antibody immune responses elicited against biological therapeutics. J Pharm Biomed Anal. 2011; 55 (5): 878–88. DOI: https://doi.org/10.1016/j.jpba.2011.03.038

23. Shankar G., Devanarayan V., Amaravadi L., Barrett Y.C., Bowsher R., Finco-Kent D., Fiscella M., Gorovits B., Kirschner S., Moxness M., Parish T., Quarmby V., Smith H., Smith W., Zuckerman L.A, Koren E. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008; 48 (5): 1267–81. DOI: https://doi.org/10.1016/j.jpba.2008.09.020

24. Suh K., Kyei I., Hage D.S. Approaches for the detection and analysis of antidrug antibodies to biopharmaceuticals: A review. J Sep Sci. 2022; 45 (12): 2077–92. DOI: https://doi.org/10.1002/jssc.202200112

25. Mojtahed Poor S., Ulshöfer T., Gabriel T.A., Henke M., Köhm M., Behrens F., Geisslinger G., Parnham M.J., Burkhardt H., Schiffmann S. Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab. Clin Exp Immunol. 2019; 196 (2): 259–75. DOI: https://doi.org/10.1111/cei.13261

26. Hajela P., Patel R., Kale P., Kumar M., Khambhampaty S. A comparative multi-tiered immunogenicity assessment of biosimilar pegylated filgrastim: validation of methods for clinical assessment of INTP5. Expert Opin Biol Ther. 2022; 22 (2): 321–30. DOI: https://doi.org/10.1080/14712598.2022.2006630

27. Wadhwa M., Thorpe R. Harmonization and standardization of immunogenicity assessment of biotherapeutic products. Bioanalysis. 2019; 11 (17): 1593–604. DOI: https://doi.org/10.4155/bio-2019-0202

28. Matsumoto T., Shima M., Fukuda K., Nogami K., Giddings J.C., Murakami T., Tanaka I., Yoshioka A. Immunological characterization of factor VIII autoantibodies in patients with acquired hemophilia A in the presence or absence of underlying disease. Thromb Res. 2001; 104 (6): 381–88. DOI: https://doi.org/10.1016/S0049-3848(01)00385-1

29. Malucchi S., Bertolotto A. Clinical aspects of immunogenicity to biopharmaceuticals. In: Weert M, Moller EH, editors. Immunogenicity of biopharmaceuticals. Biotechnology: pharmaceutical aspects. XII. 1st ed. New York: Springer; 2008; 27–56.

30.  Aalberse R.C., Schuurman J. IgG4 breaking the rules. Immunology. 2002; 105 (1): 9–19. DOI: https://doi.org/10.1046/j.0019-2805.2001.01341.x

31. Gorovits B., Wang Y., Zhu L., Araya M., Kamerud J., Lepsy Ch. Anti-drug Antibody Assay Conditions Significantly Impact Assay Screen and Confirmatory Cut-Points. AAPS J. 2019; 21 (4): 71. DOI: https://doi.org/10.1208/s12248-019-0342-x

32. Davis R., Velkoska E., McCallum H., Majcen B., Gille A., Kingwell B., Martin K. A method for detection of anti-drug antibodies to a biotherapeutic (CSL112) with endogenous counterpart (apolipoprotein A-I) using a novel sample pre-treatment electrochemiluminescence assay. J Immunol Methods. 2023; 513: 113411. DOI: https://doi.org/10.1016/j.jim.2022.113411

33. Gorovits B., Roldan M.A., Baltrukonis D., Cai C-H., Donley J., Jani D., Kamerud J., McCush F., Thomas J.S, Wang Y. Anti-drug Antibody Assay Validation: Improved Reporting of the Assay Selectivity via Simpler Positive Control Recovery Data Analysis. AAPS J. 2019; 21 (5): 76. DOI: https://doi.org/10.1208/s12248-019-0347-5

34. Pöhler A., Emrich T., Jordan G., Schäfer M., Stubenrauch K.-G., Staack R.F, Zach C., Meir J., Faigle J. Comparison of assay formats used for the detection of pre-existing anti-drug antibodies against monoclonal antibodies. Bioanalysis. 2022; 14 (13): 923–33. DOI: https://doi.org/10.4155/bio-2022-0085

35. Ramsland P.A., Movafagh B.F., Reichlin M., Edmundson A.B. Interference of rheumatoid factor activity by aspartame, a dipeptide methyl ester. J Mol Recognit. 1999; 12 (5): 249–57.

36. Tatarewicz S., Miller J.M., Swanson S.J., Moxness M.S. Rheumatoid factor interference in immunogenicity assays for human monoclonal antibody therapeutics. Journal of Immunological Methods. 2010; 357 (1–2): 10–6. DOI: https://doi.org/10.1016/j.jim.2010.03.012

37. Rispens T., de Vrieze H., de Groot E., Wouters D., Stapel S., Wolbink G.J, Aarden L.A. Antibodies to constant domains of therapeutic monoclonal antibodies: anti-hinge antibodies in immunogenicity testing. J Immunol Methods. 2012; 375 (1-2): 93–9. DOI: https://doi.org/10.1016/j.jim.2011.09.011

38. Hu J., Wala I., Han H., Nagatani J., Barger T., Civoli F., Kaliyaperumal A., Zhuang Y., Gupta S. Comparison of cell-based and non-cell-based assay platforms for the detection of clinically relevant anti-drug neutralizing antibodies for immunogenicity assessment of therapeutic proteins. J Immunol Methods. 2015; 419: 1–8. DOI: https://doi.org/10.1016/j.jim.2015.02.006

39. Wu B., Chung S., Jiang X.R., McNally J., Pedras-Vasconcelos J., Pillutla R., White J.T., Xu Y., Gupta S. Strategies to determine assay format for the assessment of neutralizing antibody responses to biotherapeutics. AAPS J. 2016; 18 (6): 1335–50. DOI: https://doi.org/10.1208/s12248-016-9954-6

40. Coddens A., Snoeck V., Bontinck L., Buyse M-A., O Pine S.O. An innovative method for characterizing neutralizing antibodies against antibody-derived therapeutics. J Immunol Methods. 2020; 487: 112896. DOI: https://doi.org/10.1016/j.jim.2020.112896

41. Boulenouar H., Amar Y., Bouchoutrouch N., Faouzi M.E.A., Cherrah Y., Sefrioui H. Nanobodies and their medical applications. Genetics and Molecular Research. 2020; 19 (1): gmr18452. DOI: https://doi.org/10.4238/gmr18452

42. Tada M., Suzuki T., Ishii-Watabe A. Development and characterization of an anti-rituximab monoclonal antibody panel. MAbs. 2018; 10 (3): 370–79. DOI: https://doi.org/10.1080/19420862.2018.1424610

43. Wadhwa M., Mytych D.T., Bird Ch., Barger T., Dougall Th., Han H., Rigsby P., Kromminga A., Thorpe R. Establishment of the first WHO Erythropoietin antibody reference panel: Report of an international collaborative study. J Immunol Methods. 2016; 435: 32–42. DOI: https://doi.org/10.1016/j.jim.2016.05.005

44. Shibata H., Nishimura K., Miyama Ch., Tada M., Suzuki T., Saito Y., Ishii-Watabe A. Comparison of different immunoassay methods to detect human anti-drug antibody using the WHO erythropoietin antibody reference panel for analytes. J Immunol Methods. 2018; 452: 73–7. DOI: https://doi.org/10.1016/j.jim.2017.09.009

45. Suzuki T., Tada M., Ishii-Watabe A. Development of anti-drug monoclonal antibody panels against adalimumab and infliximab. Biologicals. 2020; 63: 39–47. DOI: https://doi.org/10.1016/j.biologicals.2019.12.003

46. Bivi N., Swearingen C.A., Shockley T.E., Sloan J.H., Pottanat T.G., Carter Q.L., Hodsdon M.E., Siegel R.W., Konrad R.J. Development and validation of a novel immunogenicity assay to detect anti-drug and anti-PEG antibodies simultaneously with high sensitivity. J Immunol Methods. 2020; 486: 112856. DOI: https://doi.org/10.1016/j.jim.2020.112856

47. Künzel C., Abdolzade-Bavil A., Engel A.M., Pleitner M., Schick E., Stubenrauch K. Assay concept for detecting anti-drug IgM in human serum samples by using a novel recombinant human IgM positive control. Bioanalysis. 2021; 13 (4): 253–63. DOI: https://doi.org/10.4155/bio-2020-0308

48. Nishimura K., Shibata N., Aoyama M., Hosogi J., Kadotsuji K., Minoura K., Mori T., Nakamura T., Nishimiya K., Nomura T., Saito T., Soma M., Wakabayashi H., Sakamoto N., Niimi S., Katori N., Saito Y., Ishii-Watabe A. Elucidation of the statistical factors that influence anti-drug antibody cut point setting through a multi-laboratory study. Bioanalysis. 2019; 11 (6): 509–24. DOI: https://doi.org/10.4155/bio2018-0178

49. Zhang J., Arends R.H., Kubiak R.J., Roskos L.K., Liang M., Lee N., Chen C. C-K., Yang H. A new method for identification of outliers in immunogenicity assay cut point data. J Immunol Methods. 2020; 484–5: 112817 DOI: https://doi.org/10.1016/j.jim.2020.112817

50. Macpherson A.J., McCoy K.D., Johansen F.E., Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2010; 1 (1): 11–22. DOI: https://doi.org/10.1038/mi.2007.6

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»