The role of residual xenoanthigens in the degeneration of xenogenic bioprosthetic heart valves

Abstract

Xenogenic tissue heart valves are superior to mechanical heart valves prostheses in terms of optimal hydrodynamics and low thrombogenicity which does not require lifelong anticoagulant therapy. However, xenotissue heart valves are apt to calcification limiting their widespread use, especially in children and young adults. Recently, there are a lot of data suggesting that humoral and cellular immune response have been involved in the degeneration of xenotissue heart valves in addition to passive physical and physicochemical processes. The main triggers of the immune response to xenotissue implants are carbohydrate antigens, such as galactose-α-1,3-galactose and N-glycolylneuramic acid. We assume that the improvement of biomaterial chemical modification and/or use of knockout animals for the valve device manufacture may increase the life of xenotissue heart valves and reduce the number of reoperations.

Keywords:bioprosthetic heart valves; dysfunctions; calcification; xenoantigens; galactose-α1,3-galactose; N-glycolylneuraminic acid; review

Received 21.03.2019 Accepted 16.06.2019

For citation: Kostyunin A.E., Rezvova M.A. The role of residual xenoanthigens in the degeneration of xenogenic bioprosthetic heart valves. Immunologiya. 2019; 40 (4): doi: 10.24411/0206-4952-2019-14007.

Acknowledgments. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

References

1. Baumgartner H., Falk V., Bax J.J., De Bonis M., et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017; 38 (36): 2739-91. doi: 10.1093/eurheartj/ehx391.

2. Nishimura R.A., Otto C.M., Bonow R.O., Carabello B.A., et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation. 2017; 135 (25): e1159-95. doi: 10.1161/CIR.0000000000000503.

3. Pibarot P., Dumesnil J.G. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009; 119 (7): 1034-48. doi: 10.1161/CIRCULATIONAHA.108.778886.

4. Manji R.A., Lee W., Cooper D.K.C. Xenograft bioprosthetic heart valves: past, present and future. Int. J. Surg. 2015; 23 (Pt B): 280-4. doi: 10.1016/j.ijsu.2015.07.009.

5. Capodanno D., Petronio A.S., Prendergast B., Eltchaninoff H., et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. Cardiothorac. Surg. 2017; 52 (3): 408-17. doi: 10.1093/ejcts/ezx244.

6. Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005; 79 (3): 1072-80. doi: 10.1016/j.athoracsur.2004.06.033.

7. Manji R.A., Ekser B., Menkis A.H., Cooper D.K. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21 (1): 1-10. doi: 10.1111/xen.12080.

8. Naso F., Gandaglia A., Bottio T., Tarzia V., et al. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation. 2013; 20 (4): 252-61. doi: 10.1111/xen.12044.

9. Reuven E.M., Leviatan Ben-Arye S., Marshanski T., Breimer M.E., et al. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016; 23 (5): 381-92. doi: 10.1111/xen.12260.

10. Joziasse D.H., Oriolb R. Xenotransplantation: the importance of the Galα1,3Gal epitope in hyperacute vascular rejection. Biochim. Biophys. Acta. 1999; 1455 (2-3): 403-18. doi: 10.1016/S0925-4439(99)00056-3.

11. Huai G., Qi P., Yang H., Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (review). Int. J. Mol. Med. 2016; 37 (1): 11-20. doi: 10.3892/ijmm.2015.2397.

12. Macher B.A., Galili U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim. Biophys. Acta. 2008; 1780 (2): 75-88. doi: 10.1016/j.bbagen.2007.11.003.

13. Buhler L., Friedman T., Iacomini J., Cooper D.K. Xenotransplantation-state of the art - update 1999. Front. Biosci. 1999; 4: D416-32. PMID: 10209058.

14. Cooper D.K. Xenoantigens and xenoantibodies. Xenotransplantation. 1998; 5 (1): 6-17. doi: 10.1111/j.1399-3089.1998.tb00003.x.

15. Galili U. Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology. 2013; 140 (1): 1-11. doi: 10.1111/imm.12110.

16. Hamanova M., Chmelikova M., Nentwich I., Thon V., et al. Anti-Gal IgM, IgA and IgG natural antibodies in childhood. Immunol. Lett. 2015; 164 (1): 40-3. doi: 10.1016/j.imlet.2015.02.001.

17. Ng P.S., Bohm R., Hartley-Tassell L.E., Steen J.A., et al. Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat. Commun. 2014; 5: 5750. doi: 10.1038/ncomms6750.

18. Hayakawa T., Aki I., Varki A., Satta Y., et al. Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics. 2006; 172 (2): 1139-46. doi: 10.1534/genetics.105.046995.

19. Hurh S., Kang B., Choi I., Cho B., et al. Human antibody reactivity against xenogeneic N-glycolylneuraminic acid and galactose-α-1,3-galactose antigen. Xenotransplantation. 2016; 23 (4): 279-92. doi: 10.1111/xen.12239.

20. Salama A., Evanno G., Harb J., Soulillou J.P. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation. 2015; 22 (2): 85-94. doi: 10.1111/xen.12142.

21. Zhu A., Hurst R. Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation. 2002; 9 (6): 376-81. PMID: 12371933.

22. Barone A., Benktander J., Whiddon C., Jin C., et al. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 2018; 25 (5): e12406. doi: 10.1111/xen.12406.

23. Barone A., Benktander J., Teneberg S., Breimer M.E. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation. 2014; 21 (6): 510-22. doi: 10.1111/xen.12123.

24. Lee W., Hara H., Cooper D.K., Manji R.A. Expression of NeuGc on pig heart valves. Xenotransplantation. 2015; 22 (2): 153-4. doi: 10.1111/xen.12162.

25. Konakci K.Z., Bohle B., Blumer R., Hoetzenecker W., et al. Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur. J. Clin. Invest. 2005; 35 (1): 17-23. doi: 10.1111/j.1365-2362.2005.01441.x.

26. Lee W., Long C., Ramsoondar J., Ayares D., et al. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016; 23 (5): 370-80. doi: 10.1111/xen.12254.

27. Bloch O., Golde P., Dohmen P.M., Posner S., et al. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng. Part A. 2011; 17 (19-20): 2399-405. doi: 10.1089/ten.TEA.2011.0046.

28. Mangold A., Szerafin T., Hoetzenecker K., Hacker S., et al. Alpha-Gal specific IgG immune response after implantation of bioprostheses. Thorac Cardiovasc Surg. 2009; 57 (4): 191-5.

29. Park C.S., Park S.S., Choi S.Y., Yoon S.H., et al. Anti alpha-gal immune response following porcine bioprosthesis implantation in children. J. Heart Valve Dis. 2010; 19 (1): 124-30. PMID: 20329498.

30. Human P., Zilla P. Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration? J. Long Term Eff. Med. Implants. 2001; 11 (3-4): 199-220. PMID: 11921664.

31. Jin R., Greenwald A., Peterson M.D., Waddell T.K. Human monocytes recognize porcine endothelium via the interaction of galectin 3 and alpha-GAL. J. Immunol. 2006; 177 (2): 1289-95. PMID: 16818789.

32. Nair V., Law K.B., Li A.Y., Phillips K.R., et al. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc. Pathol. 2012; 21 (3): 158-68. doi: 10.1016/j.carpath.2011.05.003.

33. Sakaue T., Nakaoka H., Shikata F., Aono J., et al. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol. Open. 2018, 7 (8). pii: bio034009. doi: 10.1242/bio.034009.

34. Shetty R., Pibarot P., Audet A., Janvier R., et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009; 39 (6): 471-80. doi: 10.1111/j.1365-2362.2009.02132.x.

35. Manji R.A., Hara H., Cooper D.K. Characterization of the cellular infiltrate in bioprosthetic heart valves explanted from patients with structural valve deterioration. Xenotransplantation. 2015; 22 (5): 406-7. doi: 10.1111/xen.12187.

36. Stein P.D., Wang C.H., Riddle J.M., Magilligan D.J. Jr. Leukocytes, platelets, and surface microstructure of spontaneously degenerated porcine bioprosthetic valves. J. Card. Surg. 1988; 3 (3): 253-61. PMID: 2980025.

37. Cho H.J., Cho H.J., Kim H.S. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr. Atheroscler. Rep. 2009; 11 (3): 206-13. PMID: 19361352.

38. Arsalan M., Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 2016; 13 (6): 360-7. doi: 10.1038/nrcardio.2016.43.

39. Lutz A.J., Li P., Estrada J.L., Sidner R.A., et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation. 2013; 20 (1): 27-35. doi: 10.1111/xen.12019.

40. McGregor C.G., Kogelberg H., Vlasin M., Byrne G.W. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J. Heart Valve Dis. 2013; 22 (3): 383-90. PMID: 24151765.

41. Dunn R.M. Cross-linking in biomaterials. Plast. Reconstr. Surg. 2012; 130 (5 Suppl. 2): 18S-26S. doi: 10.1097/PRS.0b013e31825efea6.

42. Migneault I., Dartiguenave C., Bertrand M.J., Waldron K.C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004; 37 (5): 790-6, 798-802. doi: 10.2144/04375RV01.

43. Naso F., Gandaglia A., Iop L., Spina M., et al. Alpha-Gal detectors in xenotransplantation research: a word of caution. Xenotransplantation. 2012; 19 (4): 215-20. doi: 10.1111/j.1399-3089.2012.00714.x.

44. Sato M., Hiramatsu Y., Matsushita S., Sato S., et al. Shrinkage temperature and anti-calcification property of triglycidylamine-crosslinked autologous tissue. J. Artif. Organs. 2014; 17 (3): 265-71. doi: 10.1007/s10047-014-0768-y.

45. Everaerts F., Torrianni M., Hendriks M., Feijen J. Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges. J. Biomed. Mater. Res. A. 2007; 83 (4): 1176-83. doi: 10.1002/jbm.a.31398.

46. Vasudev S.C., Chandy T., Sharma C.P., Mohanty M., et al. Effects of double cross-linking technique on the enzymatic degradation and calcification of bovine pericardia. J. Biomater. Appl. 2000; 14 (3): 273-95. doi: 10.1177/088532820001400305.

47. Chang Y., Tsai C.C., Liang H.C., Sung H.W. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials. 2002; 23 (12): 2447-57. PMID: 12033592.

48. Lim H.G., Choi S.Y., Yoon E.J., Kim S.H., et al. In vivo efficacy of alpha-galactosidase as possible promise for prolonged durability of bioprosthetic heart valve using alpha1,3-galactosyltransferase knockout mouse. Tissue Engineering Part A. 2013; 19 (21-22): 2339-48. doi: 10.1089/ten.tea.2013.0062.

49. Kumar A., Sundararaghavan V., Browning A.R. Study of temperature dependence of thermal conductivity in cross-linked epoxies using molecular dynamics simulations with long range interactions. Modelling Simul. Mater. Sci. Eng. 2014; 22 (2): 025013. doi: 10.1088/0965-0393/22/2/025013.

50. Li N., Li Y., Gong D., Xia C., et al. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interact Cardiovasc. Thorac. Surg. 2018; 26 (5): 768-76. doi: 10.1093/icvts/ivx416.

51. Bracey D.N., Seyler T.M., Jinnah A.H., Lively M.O., et al. A decellularized porcine xenograft-derived bone scaffold for clinical use as a bone graft substitute: a critical evaluation of processing and structure. J. Funct. Biomater. 2018; 9 (3). doi: 10.3390/jfb9030045.

52. Heuschkel M.A., Leitolis A., Roderjan J.G., Suss P.H., et al. In vitro evaluation of bovine pericardium after a soft decellularization approach for use in tissue engineering. Xenotransplantation. 2019; 26 (2): e12464. doi: 10.1111/xen.12464.

53. Wu L.C., Kuo Y.J., Sun F.W., Chen C.H., et al. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017; 18 (3): 383-96. doi: 10.1007/s10561-017-9619-4.

54. Helder M.R.K., Stoyles N.J., Tefft B.J., Hennessy R.S., et al. Xenoantigenicity of porcine decellularized valves. J. Cardiothorac. Surg. 2017; 12 (1): 56. doi: 10.1186/s13019-017-0621-5.

55. Paul A., Padler-Karavani V. Evolution of sialic acids: implications in xenotransplant biology. Xenotransplantation. 2018; 25 (6): e12424. doi: 10.1111/xen.12424.

56. Naso F., Gandaglia A. Different approaches to heart valve decellularization: a comprehensive overview of the past 30 years. Xenotransplantation. 2017; 25 (1): e12354. doi: 10.1111/xen.12354.

57. Gao H.W., Li S.B., Sun W.Q., Yun Z.M., et al. Quantification of α-Gal antigen removal in the porcine dermal tissue by α-galactosidase. Tissue Eng. Part C Methods. 2005; 21 (11): 1197-204. doi: 10.1089/ten.tec.2015.0129.

58. Kim M.S., Lim H.G., Kim Y.J. Calcification of decellularized and alpha-galactosidase-treated bovine pericardial tissue in an alpha-Gal knock-out mouse implantation model: comparison with primate pericardial tissue. Eur. J. Cardiothorac. Surg. 2016; 49 (3): 894-900. doi: 10.1093/ejcts/ezv189.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»