The role of IL-37 in neutrophil-mediated inflammatory diseases

Abstract

Neutrophils are a key element of the innate immune system which protect the body against pathogens. Generated in the bone marrow, they play a crucial role in the acute phase of inflammation. However, these cells can also cause unwanted tissue and organ damage due to excess inflammation.

IL-37 plays a role as a negative regulator of innate immunity. This cytokine has the potential to suppress neutrophil activity in various pathologies, including autoimmune diseases, psoriasis and cancer.

The review provides information on IL-37 as a potential therapeutic agent and diagnostic biomarker in pathologies associated with excessive neutrophilic inflammation.

Keywords:IL-37; neutrophils; inflammation

For citation: Nikolskii A.A., Shilovskiy I.P., Gudima G.O., Khaitov M.R. The role of IL-37 in neutrophil-mediated inflammatory diseases. Immunologiya. 2024; 45 (1): 107–15. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-107-115 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation No. 23-24-00291, https://rscf.ru/en/project/23-24-00291/.

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. All authors have contributed equally to the study, read the final version of the article and agreed with its contents.

References

1. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014; 9: 181–218. DOI: https://doi.org/10.1146/annurev-pathol-020712-164023

2. Doeing D.C., Borowicz J.L., Crockett E.T. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin Pathol. 2003; 3: 3. DOI: https://doi.org/10.1186/1472-6890-3-3

3. Mestas J., Hughes C.C.W. Of mice and not men: Differences between mouse and human immunology. J Immunol. 2004; 172: 2731–8. DOI: https://doi.org/10.4049/jimmunol.172.5.2731

4. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010; 33: 657–70. DOI: https://doi.org/10.1016/j.immuni.2010.11.011

5. Dotta L., Tassone L., Badolato R. Clinical and genetic features of warts, hypogammaglobulinemia, infections and myelokathexis (WHIM) syndrome. Curr Mol Med. 2011; 11: 317–25. DOI: https://doi.org/10.2174/156652411795677963

6. Zeidler C., Germeshausen M., Klein C., Welte K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol. 2009; 144: 459–67. DOI: https://doi.org/10.1111/j.1365-2141.2008.07425.x

7. Amulic B., Cazalet C., Hayes G.L., Metzler K.D., Zychlinsky A. Neutrophil function: From mechanisms to disease. Annu Rev Immunol. 2012; 30: 459–89. DOI: https://doi.org/10.1146/annurev-immunol-020711-074942

8. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11: 519–31. DOI: https://doi.org/10.1038/nri3024

9. Woytschak J., Keller N., Krieg C., Impellizzieri D., Thompson R.W., Wynn T.A., Zinkernagel A.S., Boyman O. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity. 2016; 45: 172–84. DOI: https://doi.org/10.1016/j.immuni.2016.06.025

10. Cavalli G., Dinarello C.A. Suppression of inflammation and acquired immunity by IL-37. Immunol Rev. 2018; 281: 179–90. DOI: https://doi.org/10.1111/imr.12605

11. Cavalli G., Justice J.N., Boyle K.E., D’Alessandro A., Eisenmesser E.Z., Herrera J.J., Hansen K.C., Nemkov T., Stienstra R., Garlanda C., Mantovani A., Seals D.R., Dagna L., Joosten L.A.B., Ballak D.B., Dinarello C.A. Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc Natl Acad Sci U S A. 2017; 114: 2313–8. DOI: https://doi.org/10.1073/pnas.1619011114

12. Monteleone M., Stow J.L., Schroder K. Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine. 2015; 74: 213–8. DOI: https://doi.org/10.1016/j.cyto.2015.03.022

13. Nold M.F., Nold-Petry C.A., Zepp J.A., Palmer B.E., Bufler P., Dinarello C.A. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010; 11: 1014–22. DOI: https://doi.org/10.1038/ni.1944

14. Sharaf N., Nicklin M.J., di Giovine F.S. Long-range DNA interactions at the IL-1/IL-36/IL-37 gene cluster (2q13) are induced by activation of monocytes. Cytokine. 2014; 68: 16–22. DOI: https://doi.org/10.1016/j.cyto.2014.03.002

15. Sims J.E., Smith D.E. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010; 10: 89–102. DOI: https://doi.org/10.1038/nri2691

16. Bufler P., Gamboni-Robertson F., Azam T., Kim S.-H., Dinarello C.A. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J. 2004; 381: 503–10. DOI: https://doi.org/10.1042/BJ20040217

17. Kumar S., McDonnell P.C., Lehr R., Tierney L., Tzimas M.N., Griswold D.E., Capper E.A., Tal-Singer R., Wells G.I., Doyle M.L., Young P.R. Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem. 2000; 275: 10308–14. DOI: https://doi.org/10.1074/jbc.275.14.10308

18. Rudloff I., Cho S.X., Lao J.C., Ngo D., McKenzie M., NoldPetry C.A., Nold M.F. Monocytes and dendritic cells are the primary sources of interleukin 37 in human immune cells. J Leukoc Biol. 2017; 101: 901–11. DOI: https://doi.org/10.1189/jlb.3MA0616-287R

19. McNamee E.N., Masterson J.C., Jedlicka P., McManus M., Grenz A., Collins C.B., Nold M.F., Nold-Petry C., Bufler P., Dinarello C.A., Rivera-Nieves J. Interleukin 37 expression protects mice from colitis. Proc Natl Acad Sci U S A. 2011; 108: 16711–6. DOI: https://doi.org/10.1073/pnas.1111982108

20. Shi X., Lai C., Zhao L., Zhang M., Liu X., Peng S., Guo W., Xu Q., Chen S., Chen G. Chloroquine and rapamycin augment interleukin-37 expression via the LC3, ERK, and AP-1 axis in the presence of lipopolysaccharides. J Immunol Res. 2020; 2020: 1–14. DOI: https://doi.org/10.1155/2020/6457879

21. Kumar S., Hanning C.R., Brigham-Burke M.R., Rieman D.J., Lehr R., Khandekar S., Kirkpatrick R.B., Scott G.F., Lee J.C., Lynch F.J., Gao W., Gambotto A., Lotze M.T. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine. 2002; 18: 61–71. DOI: https://doi.org/10.1006/cyto.2002.0873

22. Pan G., Risser P., Mao W., Baldwin D.T., Zhong A.W., Filvaroff E., Yansura D., Lewis L., Eigenbrot C., Henzel W.J., Vandlen R. IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine. 2001; 13: 1–7. DOI: https://doi.org/10.1006/cyto.2000.0799

23. Bufler P., Azam T., Gamboni-Robertson F., Reznikov L.L., Kumar S., Dinarello C.A., Kim S-H. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci U S A. 2002; 99: 13723–8. DOI: https://doi.org/10.1073/pnas.212519099

24. Tsutsumi N., Kimura T., Arita K., Ariyoshi M., Ohnishi H., Yamamoto T., Zuo X., Maenaka K., Park E.Y., Kondo N., Shirakawa M., Tochio H., Kato Z. The structural basis for receptor recognition of human interleukin-18. Nat Commun. 2014; 5: 5340. DOI: https://doi.org/10.1038/ncomms6340

25. Wald D., Qin J., Zhao Z., Qian Y., Naramura M., Tian L., Towne J., Sims J.E., Stark G.R., Li X. SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling. Nat Immunol. 2003; 4: 920–7. DOI: https://doi.org/10.1038/ni968

26. Moretti S., Bozza S., Oikonomou V., Renga G., Casagrande A., Iannitti R.G., Puccetti M., Garlanda C., Kim S., Li S., van de Veerdonk F.L., Dinarello C.A., Romani L. IL-37 inhibits inflammasome activation and disease severity in murine aspergillosis. PLoS Pathog. 2014; 10: e1004462. DOI: https://doi.org/10.1371/journal.ppat.1004462

27. Cavalli G., Koenders M., Kalabokis V., Kim J., Tan A.C., Garlanda C., Mantovani A., Dagna L., Joosten L.A.B., Dinarello C.A. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology. 2016; 55: 2220–9. DOI: https://doi.org/10.1093/rheumatology/kew325

28. Lunding L., Webering S., Vock C., Schröder A., Raedler D., Schaub B., Fehrenbach H., Wegmann M. IL-37 requires IL-18Rα and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy. 2015; 70: 366–73. DOI: https://doi.org/10.1111/all.12566

29. Banda N.K., Vondracek A., Kraus D., Dinarello C.A., Kim S-H., Bendele A., Senaldi G., Arend W.P. Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein. J Immunol. 2003; 170: 2100–5. DOI: https://doi.org/10.4049/jimmunol.170.4.2100

30. Ballak D.B., Li S., Cavalli G., Stahl J.L., Tengesdal I.W., van Diepen J.A., Klück V., Swartzwelter B., Azam T., Tack C.J., Stienstra R., Mandrup-Poulsen T., Seals D.R., Dinarello C.A. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J Biol Chem. 2018; 293: 14224–36. DOI: https://doi.org/10.1074/jbc.RA118.003698

31. Li S., Neff C.P., Barber K., Hong J., Luo Y., Azam T., Palmer B.E., Fujita M., Garlanda C., Mantovani A., Kim S., Dinarello C.A. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci U S A. 2015; 112: 2497–502. DOI: https://doi.org/10.1073/pnas.1424626112

32. Eisenmesser E.Z., Gottschlich A., Redzic J.S., Paukovich N., Nix J.C., Azam T., Zhang L., Zhao R., Kieft J.S., The E., Meng X., Dinarello C.A. Interleukin-37 monomer is the active form for reducing innate immunity. Proc Natl Acad Sci U S A. 2019; 116: 5514–22. DOI: https://doi.org/10.1073/pnas.1819672116

33. Ellisdon A.M., Nold-Petry C.A., D’Andrea L., Cho S.X., Lao J.C., Rudloff I., Ngo D., Lo C.Y., Soares da Costa T.P., Perugini M.A., Conroy P.J., Whisstock J.C., Nold M.F. Homodimerization attenuates the anti-inflammatory activity of interleukin-37. Sci Immunol. 2017; 2: eaaj1548. DOI: https://doi.org/10.1126/sciimmunol.aaj1548

34. Stevens R.L., Adachi R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev. 2007; 217: 155–67. DOI: https://doi.org/10.1111/j.1600-065X.2007.00525.x

35. Bulau A-M., Nold M.F., Li S., Nold-Petry C.A., Fink M., Mansell A., Schwerd T., Hong J., Rubartelli A., Dinarello C.A., Bufler P. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Natl Acad Sci U S A. 2014; 111: 2650–5. DOI: https://doi.org/10.1073/pnas.1324140111

36. Sharma S., Kulk N., Nold M.F., Gräf R., Kim S-H., Reinhardt D., Dinarello C.A., Bufler P. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol. 2008; 180: 5477–82. DOI: https://doi.org/10.4049/jimmunol.180.8.5477

37. Zhao M., Li Y., Guo C., Wang L., Chu H., Zhu F., Li Y., Wang X., Wang Q., Zhao W., Shi Y., Chen W., Zhang L. IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner. Cell Death Dis. 2018; 9: 582. DOI: https://doi.org/10.1038/s41419-018-0664-0

38. Grimsby S., Jaensson H., Dubrovska A., Lomnytska M., Hellman U., Souchelnytskyi S. Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett. 2004; 577: 93–100. DOI: https://doi.org/10.1016/j.febslet.2004.09.069

39. Li S., Amo-Aparicio J., Neff C.P., Tengesdal I.W., Azam T., Palmer B.E., López-Vales R., Bufler P., Dinarello C.A. Role for nuclear interleukin-37 in the suppression of innate immunity. Proc Natl Acad Sci U S A. 2019; 116: 4456–61. DOI: https://doi.org/10.1073/pnas.1821111116

40. Conti P., Lessiani G., Kritas S.K., Ronconi G., Caraffa A., Theoharides T.C. Mast cells emerge as mediators of atherosclerosis: Special emphasis on IL-37 inhibition. Tissue Cell. 2017; 49: 393–400. DOI: https://doi.org/10.1016/j.tice.2017.04.002

41. Wang X., Xu K., Chen S., Li Y., Li M. Role of interleukin-37 in inflammatory and autoimmune diseases. Iran J Immunol. 2018; 15: 165–74. DOI: https://doi.org/10.22034/IJI.2018.39386

42. Liu Y., Gao W. Interleukin-37 inhibits proliferation, migration and induces apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) by inhibiting STAT3. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2020; 36: 236–41. PMID: 32389171

43. Ziyadullaev Sh.Kh., Khudaiberdiev Sh.Sh., Aripova T.U., Rizaev Zh.A., Kamalov Z.S., Sultonov I.I., Pardaev B.B., Kim A.A. Immune changes in synovial fluid in rheumatoid arthritis. Immunologiya. 2023; 44 (5): 653–62. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-653-662 (in Russian)

44. Ye L., Jiang B., Deng J., Du J., Xiong W., Guan Y., Wen Z., Huang K., Huang Z. IL-37 alleviates rheumatoid arthritis by suppressing IL-17 and IL-17–triggering cytokine production and limiting Th17 cell proliferation. J Immunol. 2015; 194: 5110–9. DOI: https://doi.org/10.4049/jimmunol.1401810

45. Xia L., Shen H., Lu J. Elevated serum and synovial fluid levels of interleukin-37 in patients with rheumatoid arthritis: Attenuated the production of inflammatory cytokines. Cytokine. 2015; 76: 553–7. DOI: https://doi.org/10.1016/j.cyto.2015.06.005

46. Li Y., Wang Y., Liu Y., Wang Y., Zuo X., Li Y., Lu X. The possible role of the novel cytokines IL-35 and IL-37 in inflammatory bowel disease. Mediators Inflamm. 2014; 2014: 1–10. DOI: https://doi.org/10.1155/2014/136329

47. Smith C.K., Kaplan M.J. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol. 2015; 27: 448–53. DOI: https://doi.org/10.1097/BOR.0000000000000197

48. Song L., Qiu F., Fan Y., Ding F., Liu H., Shu Q., Liu W., Li X. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol. 2013; 33: 111–7. DOI: https://doi.org/10.1007/s10875-012-9791-z

49. Ye L., Ji L., Wen Z., Zhou Y., Hu D., Li Y., Yu T., Chen B., Zhang J., Ding L., Du J., Huang Z. IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity. J Transl Med. 2014; 12: 69. DOI: https://doi.org/10.1186/1479-5876-12-69

50. Lowes M.A., Suárez-Fariñas M., Krueger J.G. Immunology of psoriasis. Annu Rev Immunol. 2014; 32: 227–55. DOI: https://doi.org/10.1146/annurev-immunol-032713-120225

51. Keermann M., Kõks S., Reimann E., Abram K., Erm T., Silm H., Kingo K. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin. J Dermatol Sci. 2015; 80: 150–2. DOI: https://doi.org/10.1016/j.jdermsci.2015.08.002

52. Teng X., Hu Z., Wei X., Wang Z., Guan T., Liu N., Liu X., Ye N., Deng G., Luo C., Huang N., Sun C., Xu M., Zhou X., Deng H., Edwards C.K., Chen X., Wang X., Cui K., Wei Y., Li J. IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production. J Immunol. 2014; 192: 1815–23. DOI: https://doi.org/10.4049/jimmunol.1300047

53. Rønholt K., Nielsen A.L-L., Johansen C., Vestergaard C., Fauerbye A., López-Vales R., Dinarello C.A., Iversen L. IL-37 expression is downregulated in lesional psoriasis skin. Immunohorizons. 2020; 4: 754–61. DOI: https://doi.org/10.4049/immunohorizons.2000083

54. Nikolskii A.A., Shilovskiy I.P., Yumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petukhova O.A., Kudlay D.A., Khaitov M.R. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya. 2021; 42 (6): 60–14. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-600-614 (in Russian)

55. Charrad R., Berraïes A., Hamdi B., Ammar J., Hamzaoui K., Hamzaoui A. Anti-inflammatory activity of IL-37 in asthmatic children: Correlation with inflammatory cytokines TNF-α, IL-β, IL-6 and IL-17A. Immunobiology. 2016; 221: 182–7. DOI: https://doi.org/10.1016/j.imbio.2015.09.009

56. Döring Y., Drechsler M., Soehnlein O., Weber C. Neutrophils in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015; 35: 288–95. DOI: https://doi.org/10.1161/ATVBAHA.114.303564

57. Chai M., Ji Q., Zhang H., Zhou Y., Yang Q., Zhou Y., Guo G., Liu W., Han W., Yang L., Zhang L., Liang J., Liu Y., Shi D., Zhao Y. The protective effect of interleukin-37 on vascular calcification and atherosclerosis in apolipoprotein E-deficient mice with diabetes. J Interferon Cytokine Res. 2015; 35: 530–9. DOI: https://doi.org/10.1089/jir.2014.0212

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»