IL-6 deficiency increases the susceptibility to tuberculosis infection of MHC-II congenic mouse strains

Abstract

Introduction. Excessive, poorly controlled inflammation in the lungs is one of the complications of the immune response during tuberculosis. On one hand, increased production of IL-6 in the lungs significantly correlates with the progression of tuberculosis in susceptible mice. On the other hand, a total deficiency of IL-6 on a tuberculosis-resistant genetic background leads to susceptibility to the infection. In this regard, the role of the cytokine IL-6 in the immune response during tuberculosis may differ between genetically sensitive and more resistant individuals.

Aim – to study the effect of IL-6 deficiency on the immune response and sensitivity to the infection in susceptible to tuberculosis MHC-II congenic mouse strains.

Material and methods. 2–3 months old females of IL-6-deficient B6.I.100.IL-6KO and B6.I.9.3.IL-6KO and wild-type B6.I.100 and B6.I.9.3 mice were used for aerosol infection with virulent strain M. tuberculosis H37Rv, 100 CFU/mouse. Determination of CFU numbers in the organs of infected animals was assessed by plating suspensions of lung and spleen cells on Dubos agar and macrocolonies counting after 21 days of cultivation. Cell surface phenotype and intracellular cytokine production after stimulation of lung cells with mycobacterial antigens in vitro were measured by flow cytometry. Lung cryosections were stained with hematoxylin and eosin.

Results. We found that IL-6 deficiency leads to a decreased lifespan after tuberculosis infection in the congenic strains B6.I.100.IL-6KO and B6.I.9.3.IL-6KO compared to the control animals B6.I.100 and B6.I.9.3, respectively. IL-6 deficiency also results in increased migration of neutrophils into the lungs of B6.I.9.3.IL-6KO mice at the beginning of the infection. Additionally, we observed lower numbers of specific IL-17-producing Th17 lymphocytes but a higher level of TNF-a production in the lungs of IL-6KO animals compared to wild-type controls. During the later stages of tuberculosis infection, we detected severe diffuse inflammation in the lungs of IL-6-deficient mice, whereas more concentrated areas of inflammation separated from uninfected lung tissue were observed in the lungs of wild-type animals.

Conclusion. IL-6 deficiency on the background of genetically determined high sensitivity to tuberculosis leads to an aggravation of the infection, which occurs due to mechanisms that differ from those realized in mice resistant to tuberculosis.

Keywords:tuberculosis; IL-6; IL-17; inflammation; lung pathology; susceptibility to infection

For citation: Linge I.A., Kapina M.A., Tsareva A.K., Kondratieva E.V., Apt A.S., Logunova N.N. IL-6 deficiency increases the susceptibility to tuberculosis infection of MHC-II congenic mouse strains. Immunologiya. 2024; 45 (2): 171–82. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-171-182 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation No. 23-25-00087.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Concept and design of the study – Linge I.A., Logunova N.N.; collection and processing of material – Linge I.A., Logunova N.N., Kapina M.A., Tsareva A.K., Kondratyeva E.V.; statistical processing – Linge I.A., Logunova N.N., Kapina M.A.; writing the text – Linge I.A., Apt A.S.; editing – Linge I.A., Logunova N.N., Apt A.S.

References

1. Global Tuberculosis Report 2022. URL: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (date of access on 25.03.2023)

2. Russell D.G. Who puts the tubercle in tuberculosis? Nat Rev Microbiol. 2007; 5: 39–47. DOI: https://doi.org/10.1038/nrmicro1538

3. O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P.R. The Immune response in tuberculosis. Annu Rev Immunol 2013; 31: 475–527. DOI: https://doi.org/10.1146/annurev-immunol-032712-095939

4. Etna M.P., Giacomini E., Severa M., Coccia E.M. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis. Semin Immunol. 2014; 26: 543–51. DOI: https://doi.org/10.1016/J.SMIM.2014.09.011

5. Domingo-Gonzalez R., Prince O., Cooper A., Khader S. Cytokines and chemokines in mycobacterium tuberculosis infection. Microbiol Spectr. 2016; 4 (5). DOI: https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016

6. Cicchese J.M., Evans S., Hult C., Joslyn L.R., Wessler T., Millar J.A., Marino S., Cilfone N.A., Mattila J.T., Linderman J.J., et al. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev. 2018; 285: 147–67. DOI: https://doi.org/10.1111/IMR.12671

7. Potapnev M.P. Cytokine storm: causes and consequences. Immunologiya. 2021; 42 (2): 175–88. DOI: https://doi.org/10.33029/0206-4952-2021-42-2-175-188 (in Russian)

8. Ritter K., Rousseau J., Hölscher C. The role of gp130 cytokines in tuberculosis. Cells. 2020; 9 (12): 2695. DOI: https://doi.org/10.3390/cells9122695

9. Murakami M., Kamimura D., Hirano T. Pleiotropy and specificity: insights from the interleukin 6 family of cytokines. Immunity. 2019; 50: 812–31. DOI: https://doi.org/10.1016/j.immuni.2019.03.027

10. Ladel C.H., Blum C., Dreher A., Reifenberg K., Kopf M., Kaufmann S.H.E. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun. 1997; 65: 4843–9. DOI: https://doi.org/10.1128/iai.65.11.4843-4849.1997

11. Saunders B.M., Frank A.A., Orme I.M., Cooper A.M. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to mycobacterium tuberculosis infection. Infect Immun. 2000; 68: 3322–6. DOI: https://doi.org/10.1128/IAI.68.6.3322-3326.2000

12. Linge I., Tsareva A., Kondratieva E., Dyatlov A., Hidalgo J., Zvartsev R., Apt A. Pleiotropic effect of IL-6 produced by B-lymphocytes during early phases of adaptive immune responses against TB infection. Front Immunol. 2022; 13: 750068. DOI: https://doi.org/10.3389/fimmu.2022.750068

13. Lyadova I.V., Tsiganov E.N., Kapina M.A., Shepelkova G.S., Sosunov V.V., Radaeva T.V., Majorov K.B., Shmitova N.S., van den Ham H.J., Ganusov V.V., et al. In mice, tuberculosis progression is associated with intensive inflammatory response and the accumulation of GR-1dim cells in the lungs. PLoS One. 2010; 5 (5): e10469. DOI: https://doi.org/10.1371/journal.pone.0010469

14. Hussain R., Kaleem A., Shahid F., Dojki M., Jamil B., Mehmood H., Dawood G., Dockrell H.M. Cytokine profiles using whole-blood assays can discriminate between tuberculosis patients and healthy endemic controls in a BCG-vaccinated population. J Immunol Methods. 2002; 264: 95–108. DOI: https://doi.org/10.1016/S0022-1759(02)00092-3

15. Buha I., Škodrić-Trifunović V., Adžić-Vukičević T., Ilić A., Protić A.B., Stjepanović M., Anđelković M., Vreća M., Milin-Lazović J., Spasovski V., et al. Relevance of Tnf-α, Il-6 and Irak1 gene expression for assessing disease severity and therapy effects in tuberculosis patients. J Infect Dev Ctries. 2019; 13: 419–25. DOI: https://doi.org/10.3855/jidc.10949

16. Kapina M.A., Shepelkova G.S., Avdeenko V.G., Guseva A.N., Kondratieva T.K., Evstifeev V.V., Apt A.S. Interleukin-11 drives early lung inflammation during mycobacterium tuberculosis infection in genetically susceptible mice. PLoS One. 2011; 6 (7): e21878. DOI: https://doi.org/10.1371/journal.pone.0021878

17. Shepelkova G., Evstifeev V., Majorov K., Bocharova I., Apt A. therapeutic effect of recombinant mutated interleukin 11 in the mouse model of tuberculosis. J Infect Dis. 2016; 214 (3): 496–501. DOI: https://doi.org/10.1093/infdis/jiw176

18. Logunova N., Korotetskaya M., Polshakov V., Apt A. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical class II H2-Ab1 gene. PLoS Genet. 2015; 11: 1–22. DOI: https://doi.org/10.1371/journal.pgen.1005672

19. Logunova N., Kapina M., Kondratieva E., Apt A. The H2-A Class II molecule α/β-chain cis-mismatch severely affects cell surface expression, selection of conventional CD4+ T cells and protection against TB infection. Front Immunol. 2023; 14: 1183614. DOI: https://doi.org/10.3389/fimmu.2023.1183614

20. Tervi A., Junna N., Broberg M., Jones S.E., FinnGen, Strausz S., et al. Large registry-based analysis of genetic predisposition to tuberculosis identifies genetic risk factors at HLA. Hum Mol Genet. 2023; 32 (1): 161–71. DOI: https://doi.org/10.1093/hmg/ddac212

21. Jasenosky L.D., Scriba T.J., Hanekom W.A., Goldfeld A.E. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Immunol Rev. 2015; 264 (1): 74–87. DOI: https://doi.org/10.1111/imr.12274

22. Sveinbjornsson G., Gudbjartsson D.F., Halldorsson B.V., Kristinsson K.G., Gottfredsson M., Barrett J.C., et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016; 48 (3): 318–22. DOI: https://doi.org/10.1038/ng.3498

23. Gubernatorova E.O., Gorshkova E.A., Namakanova O.A., Zvartsev R.V., Hidalgo J., Drutskaya M.S., Tumanov A.V., Nedospasov S.A. Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Front Immunol. 2018; 9: 2718. DOI: https://doi.org/10.3389/fimmu.2018.02718

24. Zhou L., Ivanov I.I., Spolski R., Min R., Shenderov K., Egawa T., Levy D.E., Leonard W.J., Littman D.R. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007; 8 (9): 967–74. DOI: https://doi.org/10.1038/ni1488

25. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021; 33: 127–48. DOI: https://doi.org/10.1093/intimm/dxaa078

26. Lyadova I.V., Panteleev A.V. Th1 and Th17 Cells in tuberculosis: protection, pathology, and biomarkers. Mediators Inflamm. 2015; 2015: 854507. DOI: https://doi.org/10.1155/2015/854507

27. Orlova M.O., Majorov K.B., Lyadova I.V., Eruslanov E.B., M’Lan C.E., Greenwood C.M.T., Schurr E., Apt A.S. Constitutive differences in gene expression profiles parallel genetic patterns of susceptibility to tuberculosis in mice. Infect Immun. 2006; 74: 3668–72. DOI: https://doi.org/10.1128/IAI.00196-06

28. Nagabhushanam V., Solache A., Ting L.-M., Escaron C.J., Zhang J.Y., Ernst J.D. Innate inhibition of adaptive immunity: mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-γ. J Immunol. 2003; 171: 4750–7. DOI: https://doi.org/10.4049/jimmunol.171.9.4750

29. Gopal R., Monin L., Slight S., Uche U., Blanchard E., A. Fallert Junecko B., Ramos-Payan R., Stallings C.L., Reinhart T.A., Kolls J.K., et al. Unexpected role for IL-17 in protective immunity against hypervirulent mycobacterium tuberculosis HN878 infection. PLoS Pathog. 2014; 10 (5): e1004099. DOI: https://doi.org/10.1371/journal.ppat.1004099

30. Fan X., Shu P., Wang Y., Ji N., Zhang D. Interactions between neutrophils and T-helper 17 cells. Front Immunol. 2023; 14: 1279837. DOI: https://doi.org/10.3389/fimmu.2023.1279837

31. Yeremeev V., Linge I., Kondratieva T., Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis. (Edinb). 2015; 95: 447–51. DOI: https://doi.org/10.1016/j.tube.2015.03.007

32. Scott N.R., Swanson R.V., Al-Hammadi N., Domingo-Gonzalez R., Rangel-Moreno J., Kriel B.A., Bucsan A.N., Das S., Ahmed M., Mehra S., et al. S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest. 2020; 130: 3098–112. DOI: https://doi.org/10.1172/JCI130546.30

33. Lyadova I.V. Neutrophils in tuberculosis: heterogeneity shapes the way? 2017; 2017: 8619307. DOI: https://doi.org/10.1155/2017/8619307

34. Chen X., Zhang M., Liao M., Graner M.W., Wu C., Yang Q., Liu H., Zhou B. Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T cells. Am J Respir Crit Care Med. 2010; 181: 734–42. DOI: https://doi.org/10.1164/RCCM.200909-1463OC

35. Gustine J.N., Jones D. Immunopathology of hyperinflammation in COVID-19. Am J Pathol. 2021; 191: 4–17. DOI: https://doi.org/10.1016/j.ajpath.2020.08.009

36. Castelnovo L., Tamburello A., Lurati A., Zaccara E., Marrazza M.G., Olivetti M., Mumoli N., Mastroiacovo D., Colombo D., Ricchiuti E., et al. Anti-IL6 treatment of serious COVID-19 disease: a monocentric retrospective experience. Medicine (United States). 2021; 100: E23582. DOI: https://doi.org/10.1097/md.0000000000023582

37. Sizyakina L.P., Skripkina N.A., Antonova E.A., Sizyakin D.V. Clinical and immunological characteristics of the postcovid period in patients with moderate-severe COVID-19 who received therapy with the inclusion of an IL-6 receptor antagonist. Immunologiya. 2022; 43 (2): 188–96. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-188-196 (in Russian)

38. Boni F.G., Hamdi I., Koundi L.M., Shrestha K., Xie J. Cytokine storm in tuberculosis and IL-6 involvement. Infect Genet Evolution. 2022; 97: 105166. DOI: https://doi.org/10.1016/j.meegid.2021.105166

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»