Exploring potential biomarkers for predicting COVID-19 severity and outcome

Abstract

Introduction. The study of COVID-19 and its consequences remains an urgent task, as the risk of emergence of new dangerous strains of SARS-CoV-2 and other infectious agents because a similar mechanism of action is still relevant. The present study contributes to the understanding of the immune system function during COVID-19 and its results may be useful for practical public health care.

Аim – to determine the prognostic potential of sCD40L, MDC, FKN, IP-10 and VEGF in relation to the severity and outcome in COVID-19.

Material and methods. Serum samples were collected from 1614 patients with various severity of COVID-19, including 302 fatal patients. Levels of sCD40L, MDC, FKN, IP-10 and VEGF were determined in the samples by multiplex immunofluorescence analysis.

Results. In severe and fatal disease cases, MDC and sCD40L concentrations were significantly lower and IP-10 concentrations were higher than in cases with milder forms of COVID-19. The significance of differences in sCD40L levels disappears when analysing data from patients without comorbid load (Charlson index ≤ 2). FKN concentration on admission to hospital was significantly lower in those cases that developed a cytokine storm.

Conclusion. MDC and IP-10 levels can be used as prognostic markers of outcome in COVID-19. FKN level has prognostic potential concerning development of the cytokine storm in the early stages of the disease.

Keywords:COVID-19; cytokines; chemokines; «cytokine storm»; biomarkers

For citation: Sushentseva N.N., Popov O.V., Apalko S.V., Asinovskaya A.Yu., Mosenko S.V., Sarana A.M., Shcherbak S.G. Exploring potential biomarkers for predicting COVID-19 severity and outcome. Immunologiya. 2024; 45 (2): 212–20. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-212-220 (in Russian)

Funding. The study was supported by St. Petersburg State University, project ID: 95412780. The study was carried out in cooperation with the Core facility center Biobank.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The study concept and design – Scherbak S.G., Sarana A.M., Apalko S.V.; material collection and processing – Asinovskaya A.Yu., Mosenko S.V., Sushentseva N.N.; statistical data processing – Popov O.S.; text writing – Sushentseva N.N., Popov O.S.; editing – Apalko S.V., Popov O.S., Sushentseva N.N.

References

1. Sizyakina L.P., Zakurskaya V.Yа., Skripkina N.A., Antonova E.A. Ferritin level as a predictor of COVID-19 severe course. Immunologiya. 2021; 42 (5): 518–25. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-518-525 (in Russian)

2. Montalvan V., Lee J., Bueso T., De Toledo J., Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020; 194: 105921. DOI: https://doi.org/10.1016/j.clineuro.2020.105921

3. Ombrello M.J., Schulert G.S. COVID-19 and cytokine storm syndrome: are there lessons from macrophage activation syndrome? Transl Res. 2021; 232: 1–12. DOI: https://doi.org/10.1016/j.trsl.2021.03.002

4. Pervakova M.Yu., Potapenko V.G., Tkachenko O.Yu., Volchkova E.V., Titova O.N., Lapin S.V., Surkova E.A., Blinova T.V., Kholopova I.V., Kuznetsova D.A., Moshnikova A.N., Mazing A.V., Kulikov A.N., Polushin Yu.S., Afanasyev A.A., Shlyk I.V., Gavrilova E.G., Klimovich A.V., Medvedeva N.V., Emanuel V.L. Cytokine patterns of fatal hyperinfl ammatory conditions, caused by secondary hemophagocytic lymphohistiocytosis, bacterial sepsis and COVID-19. Immunologiya. 2022; 43 (2): 174–87. DOI: https://doi.org/10.33029/0206-4952-2022-43-2-174-187

5. Vulcano M., Albanesi C., Stoppacciaro A., Bagnati R., D’Amico G., Struyf S., Transidico P., Bonecchi R., Del Prete A., Allavena P., Ruco L.P., Chiabrando C., Girolomoni G., Mantovani A., Sozzani S. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur J Immunol. 2001; 31 (3): 812–22. DOI: https://doi.org/10.1002/1521-4141(200103)31:3<812::aid-immu812>3.0.co;2-l

6. Bergamaschi C., Terpos E., Rosati M., Angel M., Bear J., Stellas D., Karaliota S., Apostolakou F., Bagratuni T., Patseas D., Gumeni S., Trougakos I.P., Dimopoulos M.A., Felber B.K., Pavlakis G.N. Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021; 36 (6): 109504. DOI: https://doi.org/10.1016/j.celrep.2021.109504

7. Mionnet C., Buatois V., Kanda A., Milcent V., Fleury S., Lair D., Langelot M., Lacoeuille Y., Hessel E., Coffman R., Magnan A., Dombrowicz D., Glaichenhaus N., Julia V. CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat Med. 2010; 16: 1305–12. DOI: https://doi.org/10.1038/nm.2253

8. Gupta A., Jayakumar M.N., Saleh M.A., Kannan M. Halwani R., Qaisar R., Ahmad F. SARS-CoV-2 infection-induced growth factors play differential roles in COVID-19 pathogenesis. Life Sci. 2022; 304: 120703. DOI: https://doi.org/10.1016/j.lfs.2022.120703

9. Novikov V.V., Karaulov A.V. A «storm» of soluble differentiation molecules in COVID-19. Immunologiya. 2022; 43 (4): 458–67. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-458-467 (in Russian)

10. Mantovani A., Gray P.A., Van Damme J., Sozzani S. Macrophage-derived chemokine (MDC). J Leukoc Biol. 2000; 68 (3): 400–4. DOI: https://doi.org/10.1189/jlb.68.3.400

11. Richter J.R., Sutton J.M., Belizaire R.M., Friend L.A., Schusterv R.M., Johannigman T.A., Miller S.G., Lentsch A.B., Pritts T.A. Macrophage-derived chemokine (MDC/CCL22) is a novel mediator of lung inflammation following hemorrhage and resuscitation. Shock. 2014; 42 (6): 525–31. DOI: https://doi.org/10.1097/shk.0000000000000253

12. Sushentseva N.N., Popov O.S., Apalko S.V., Urazov S.P., Anisenkova A.Yu., Minochkin A.K., Agafyina A.S., Shcherbak S.G. Biobank as a source of samples for determination of concentration reference ranges for cytokines, chemokines and growth factors circulating in the blood. Cardiovascular Therapy and Prevention. 2022; 21 (11): 25–32. DOI: https://doi.org/10.15829/1728-8800-2022-3396 (in Russian)

13. Korobova Z.R., Arsentieva N.A., Liubimova N.E., Dedkov V.G., Gladkikh A.S., Sharova A.A., Chernykh E.I., Kashchenko V.A., Ratnikov V.A., Gorelov V.P., Stanevich O.V., Kulikov A.N., Pevtsov D.E., Totolian A.A. A comparative study of the plasma chemokine profile in COVID-19 patients infected with different SARS-CoV-2 variants. Int J Mol. 2022; 23 (16): 9058. DOI: https://doi.org/10.3390/ijms23169058

14. Ritter M., Göggel R., Chaudhary N., Wiedenmann A., Jung B., Weith A., Seither P. Elevated expression of TARC (CCL17) and MDC (CCL22) in models of cigarette smoke-induced pulmonary inflammation. Biochem Biophys Res. 2005; 334 (1): 254–62. DOI: https://doi.org/10.1016/j.bbrc.2005.06.084

15. Taub D.D., Lloyd A.R., Conlon K., Wang J.M., Ortaldo J.R., Harada A., Matsushima K., Kelvin D.J., Oppenheim J.J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med. 1993; 177 (6): 1809–14. DOI: https://doi.org/10.1084/jem.177.6.1809

16. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8 (4): 420–2. DOI: https://doi.org/10.1016/S2213-2600(20)30076-X

17. Zhang Z., Ai G., Chen L., Liu S., Gong C., Zhu X., Zhang C., Qin H., Hu J., Huang J. Associations of immunological features with COVID-19 severity: a systematic review and meta-analysis. BMC Infect Dis. 2021; 21: 1–9. DOI: https://doi.org/10.1186/s12879-021-06457-1

18. Chen Y., Wang J., Liu C., Su L., Zhang D., Fan J., Yang Y., Xiao M., Xie J., Xu Y., Li Y., Zhang S. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020; 26: 1–12. DOI: https://doi.org/10.1186/s10020-020-00230-x

19. Bilaloglu S., Aphinyanaphongs Y., Jones S., Iturrate E., Hochman J., Berger J.S. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. Jama. 2022; 324 (8): 799–801. DOI: https://doi.org/10.1001/jama.2020.13372

20. Portier I., Campbell R.A. Role of platelets in detection and regulation of infection. Arterioscler Thromb Vasc. 2021; 41 (1): 70–8. DOI: https://doi.org/10.1161/atvbaha.120.314645

21. Khan S.Y., Kelher M.R., Heal J.M., Blumberg N., Boshkov L.K., Phipps R., Gettings K.F., McLaughlin N.J., Silliman C.C. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood. 2006; 108 (7): 2455–62. DOI: https://doi.org/10.1182/blood-2006-04-017251

22. Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G., Kroczek R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998; 391 (6667): 591–4. DOI: https://doi.org/10.1038/35393

23. Inwald D.P., McDowall A., Peters M.J., Callard R.E., Klein N.J. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003; 92 (9): 1041–8. DOI: https://doi.org/10.1161/01.res.0000070111.98158.6c

24. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7 (6): e438–40. DOI: https://doi.org/10.1016/s2352-3026(20)30145-9

25. Al-Tamimi A.O., Yusuf A.M., Jayakumar M.N., Ansari A.W., Elhassan M., AbdulKarim F., Kannan M., Halwani R., Ahmad F. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19. Int J Lab Hematol. 2022; 44 (4): 712–21. DOI: https://doi.org/10.1111/ijlh.13829

26. Perreau M., Suffiotti M., Marques-Vidal P., Wiedemann A., Levy Y., Laouénan C., Ghosn J., Fenwick C., Comte D., Roger T., Regina J., Vollenweider P., Waeber G., Oddo M., Calandra T., Pantaleo G. The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients. Nat Commun. 2021; 12 (1): 4888. DOI: https://doi.org/10.1038/s41467-021-25191-5

27. Solorzano J., Jaisingh K., Ahmad J., Thevuthasan S., Foster A., Watts M., Kolluru G.K., Orr A.W., Kevil C.G., Dominic P. Vascular endothelial growth factor is associated with severe COVID-19 disease. J Am Coll Cardiol. 2022; 79 (9): 2063. DOI: https://doi.org/10.1016/s0735-1097(22)03054-6

28. Josuttis D., Schwedler C., Heymann G., Gümbel D., Schmittner M.D., Kruse M., Hoppe B. Vascular Endothelial Growth Factor as Potential Biomarker for COVID-19 Severity. J Intensive Care Med. 2023; 38 (12): 1165–73. DOI: https://doi.org/10.1177/08850666231186787

29. Imaizumi T., Yoshida H., Satoh K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb. 2004; 11: 15–21. DOI: https://doi.org/10.5551/jat.11.15

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»