Cellular senescence: mechanisms and clinical implications

Abstract

Cellular senescence is a fundamental biological process which consists of an irreversible blocking of cell division induced by extrinsic or intrinsic factors. Cellular senescence is required for development and maintenance of normal structure of tissues and organs as well as for prevention of malignant transformation. However, in an aged organism, accumulation of senescent cells in tissues becomes an important factor contributing to tissue damage and aging-associated diseases. Negative effects of senescent cells are mediated by secretion of pro-inflammatory cytokines in the context of the so-called senescence-associated secretory phenotype (SASP). In immune system, increased numbers of senescent cells contribute to generalization of tissue damage and compromises defense against pathogens. In experimental models, elimination of senescent cells results in delayed development of aging-associated pathologies, increases life span of animals. Senotherapeutic drugs, designed to treat age-associated diseases by eliminating senescent cells or modulating SASP, are a subject of intense pre-clinical and clinical research.

Keywords:cellular senescence; senescent cells; immunosenescence; T cells; cytokines; senotherapeutics

For citation: Masyutina A.M., Pashenkov M.V., Pinegin B.V. Cellular senescence: mechanisms and clinical implications. Immunologiya. 2024; 45 (2): 221–34. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-221-234 (in Russian)

Funding. This work was supported by the Russian Science Foundation grant No. 23-25-00451.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Analysis of literature, writing the article – Masyutina A.M.; analysis of literature, editing of the article – Pashenkov M.V.; analysis of literature, writing the article and approval of its final version – Pinegin B.V.

References

1.Franceschi C., Bonafè M., Valensin S., Olivieri F., Luca M. De, Ottaviani E., Benedictis G. De. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000; 908 (1): 244–54. DOI: https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

2. Nasaeva E.D., Khasanova E.M., Gankovskaya L.V. Immunopathogenesis and target therapy of Alzheimer’s disease. Immunologiya. 2023; 44 (2): 231–42. DOI: https://doi.org/10.33029/0206-4952-2023-44-2-231-242

3.Artemyeva O.V., Grechenko V.V., Gromova T.V., Gankovskaya L.V. Frailty: a controversial role of inflammaging. Immunologiya. 2022; 43 (6): 746–56. DOI: https://doi.org/10.33029/0206-4952-2022-43-6-746-756

4.López-Otín C., Pietrocola F., Roiz-Valle D., Galluzzi L., Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab. 2023; 35 (1): 12–35. DOI: https://doi.org/10.1016/j.cmet.2022.11.001

5.Alessio N., Aprile D., Cappabianca S., Peluso G., Bernardo G. Di, Galderisi U. Different stages of quiescence, senescence, and cell stress identified by molecular algorithm based on the expression of ki67, rps6, and beta-galactosidase activity. Int J Mol Sci. 2021; 22 (6): 1–13. DOI: https://doi.org/10.3390/ijms22063102

6.Childs B.G., Durik M., Baker D.J., Deursen J.M. van. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015; 21 (12): 1424–35. DOI: https://doi.org/10.1038/nm.4000

7.Kell L., Simon A.K., Alsaleh G., Cox L.S. The central role of DNA damage in immunosenescence. Front Aging. 2023; 4: 1–21. DOI: https://doi.org/10.3389/fragi.2023.1202152

8.Hayflick L., Moorhead P.S.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961; 25 (3): 585–621. DOI: https://doi.org/10.1016/0014-4827(61)90192-6

9.Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol. 1973; 41 (1): 181–90. DOI: https://doi.org/10.1016/0022-5193(73)90198-7

10.Lange T. De. Shelterin-mediated telomere protection. Annu Rev Genet. 2018; 52 (September): 223–47. DOI: https://doi.org/10.1146/annurev-genet-032918-021921

11.IJpma A.S., Greider C.W. Short Telomeres Induce a DNA Damage Response in Saccharomyces cerevisiae. Mol Biol Cell. 2003; 14 (3): 987–1001. DOI: https://doi.org/10.1091/mbc.02-04-0057

12.Dierick J.F., Eliaers F., Remacle J., Raes M., Fey S.J., Larsen P.M., Toussaint O. Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochem Pharmacol. 2002; 64 (5–6): 1011–17. DOI: https://doi.org/10.1016/S0006-2952(02)01171-1

13.Hewitt G., Jurk D., Marques F.D.M., Correia-Melo C., Hardy T., Gackowska A., Anderson R., Taschuk M., Mann J., Passos J.F. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun. 2012; 3 (1): 708. DOI: https://doi.org/10.1038/ncomms1708

14.Cox L.S., Faragher R.G.A. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell. Mol. Life Sci. 2007; 64 (19–20): 2620. DOI: https://doi.org/10.1007/s00018-007-7123-x

15.Muñoz-Espín D., Cañamero M., Maraver A., Gómez-López G., Contreras J., Murillo-Cuesta S., Rodríguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M., Serrano M. Programmed Cell Senescence during Mammalian Embryonic Development. Cell. 2013; 155 (5): 1104–18. DOI: https://doi.org/10.1016/j.cell.2013.10.019

16.Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.-M., Vijg J., Steeg H. Van, Dollé M.E.T., Hoeijmakers J.H.J., Bruin A. de, Hara E., Campisi J. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Dev. Cell. 2014; 31 (6): 722–33. DOI: https://doi.org/10.1016/j.devcel.2014.11.012

17.Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell. 1997; 88 (5): 593–602. DOI: https://doi.org/10.1016/S0092-8674(00)81902-9 PMID: 9054499

18.Zhu J., Woods D., McMahon M., Bishop J.M. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 1998; 12 (19): 2997–3007. DOI: https://doi.org/10.1101/gad.12.19.2997

19.Karin O., Agrawal A., Porat Z., Krizhanovsky V., Alon U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 2019; 10 (1): 5495. DOI: https://doi.org/10.1038/s41467-019-13192-4

20.Lee S., Yu Y., Trimpert J., Benthani F., Mairhofer M., Richter-Pechanska P., Wyler E., Belenki D., Kaltenbrunner S., Pammer M., Kausche L., Firsching T., Dietert K., Schotsaert M., Martínez-Romero C., Singh G., Kunz S., Niemeyer D., Ghanem R., Salzer H., Paar C., Mülleder M., Uccellini M., Michaelis E., Khan A., Lau A., Schönlein M., Habringer A., Tomasits J., Adler J., Kimeswenger S., Gruber A., Hoetzenecker W., Steinkellner H., Purfürst B., Motz R., Di Pierro F., Lamprecht B., Osterrieder N., Landthaler M., Drosten C., García-Sastre A., Langer R., Ralser M., Eils R., Reimann M., Fan D., Schmitt C. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature. 2021; 599 (7884): 283–89. DOI: https://doi.org/10.1038/s41586-021-03995-1

21.Narita M., Nuñez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell. 2003; 113 (6): 703–16. DOI: https://doi.org/10.1016/S0092-8674(03)00401-X

22.Lee B.Y., Han J.A., Im J.S., Morrone A., Johung K., Goodwin E.C., Kleijer W.J., DiMaio D., Hwang E.S. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell. 2006; 5 (2): 187–95. DOI: https://doi.org/10.1111/j.1474-9726.2006.00199.x

23.Spaulding C., Guo W., Effros R.B. Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp. Gerontol. 1999; 34 (5): 633–44. DOI: https://doi.org/10.1016/S0531-5565(99)00033-9

24.Yosef R., Pilpel N., Tokarsky-Amiel R., Biran A., Ovadya Y., Cohen S., Vadai E., Dassa L., Shahar E., Condiotti R., Ben-Porath I., Krizhanovsky V. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 2016; 7 (1): 11190. DOI: https://doi.org/10.1038/ncomms11190

25.Chang J., Wang Y., Shao L., Laberge R., Demaria M., Campisi J., Janakiraman K., Sharpless N., Ding S., Feng W., Luo Y., Wang X., Aykin-Burns N., Krager K., Ponnappan U., Hauer-Jensen M., Meng A., Zhou D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22 (1): 78–83. DOI: https://doi.org/10.1038/nm.4010

26.Feng Z., Hu W., Teresky A.K., Hernando E., Cordon-Cardo C., Levine A.J. Declining p53 function in the aging process: A possible mechanism for the increased tumor incidence in older populations. Proc. Natl. Acad. Sci. 2007; 104 (42): 16633–38. DOI: https://doi.org/10.1073/pnas.0708043104

27.Anerillas C., Herman A.B., Rossi M., Munk R., Lehrmann E., Martindale J.L., Cui C.-Y., Abdelmohsen K., De S., Gorospe M. Early SRC activation skews cell fate from apoptosis to senescence. Sci Adv. 2022; 8 (14): 1–16. DOI: https://doi.org/10.1126/sciadv.abm0756

28.Coppé J.-P., Patil C.K., Rodier F., Sun Y., Muñoz D.P., Goldstein J., Nelson P.S., Desprez P.-Y., Campisi J. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biol. 2008; 6 (12): e301. DOI: https://doi.org/10.1371/journal.pbio.0060301

29.Basisty N., Kale A., Jeon O.H., Kuehnemann C., Payne T., Rao C., Holtz A., Shah S., Sharma V., Ferrucci L., Campisi J., Schilling B. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020; 18 (1): e3000599. DOI: https://doi.org/10.1371/journal.pbio.3000599

30.Bakkenist C.J., Kastan M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003; 421 (6922): 499–506. DOI: https://doi.org/10.1038/nature01368

31.Amirifar P., Ranjouri M.R., Yazdani R., Abolhassani H., Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr. Allergy Immunol. 2019; 30 (3): 277–88. DOI: https://doi.org/10.1111/pai.13020

32.El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993; 75 (4): 817–25. DOI: https://doi.org/10.1016/0092-8674(93)90500-P

33.Ou Y.-H., Chung P.-H., Sun T.-P., Shieh S.-Y. p53 C-Terminal Phosphorylation by CHK1 and CHK2 Participates in the Regulation of DNA-Damage-induced C-Terminal Acetylation. Mol Biol Cell. 2005; 16 (4): 1684–95. DOI: https://doi.org/10.1091/mbc.e04-08-0689

34. Stein G.H., Drullinger L.F., Soulard A., Dulić V. Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts. Mol Cell Biol. 1999; 19 (3): 2109–17. DOI: https://doi.org/10.1128/mcb.19.3.2109

35. Rayess H., Wang M.B., Srivatsan E.S. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012; 130 (8): 1715–25. DOI: https://doi.org/10.1002/ijc.27316

36. Lin A.W., Barradas M., Stone J.C., Aelst L. van, Serrano M., Lowe S.W. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 1998; 12 (19): 3008–19. DOI: https://doi.org/10.1101/gad.12.19.3008

37. Wang W., Chen J.X., Liao R., Deng Q., Zhou J.J., Huang S., Sun P. Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras -Induced Premature Senescence. Mol Cell Biol. 2002; 22 (10): 3389–403. DOI: https://doi.org/10.1128/MCB.22.10.3389-3403.2002

38. Summer R., Shaghaghi H., Schriner D., Roque W., Sales D., Cuevas-Mora K., Desai V., Bhushan A., Ramirez M.I., Romero F. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Cell Mol Physiol. 2019; 316 (6): L1049–60. DOI: https://doi.org/10.1152/ajplung.00244.2018

39. Correia-Melo C., Marques F., Anderson R., Hewitt G., Hewitt R., Cole J., Carroll B., Miwa S., Birch J., Merz A., Rushton M., Charles M., Jurk D., Tait S., Czapiewski R., Greaves L., Nelson G., Bohlooly-Y. M., Rodriguez-Cuenca S., Vidal-Puig A., Mann D., Saretzki G., Quarato G., Green D., Adams P., von Zglinicki T., Korolchuk V., Passos J. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016; 35 (7): 724–42. DOI: https://doi.org/10.15252/embj.201592862

40. Carroll B., Nelson G., Rabanal-Ruiz Y., Kucheryavenko O., Dunhill-Turner N.A., Chesterman C.C., Zahari Q., Zhang T., Conduit S.E., Mitchell C.A., Maddocks O.D.K., Lovat P., Zglinicki T. von, Korolchuk V.I. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J. Cell Biol. 2017; 216 (7): 1949–57. DOI: https://doi.org/10.1083/jcb.201610113

41. Chien Y., Scuoppo C., Wang X., Fang X., Balgley B., Bolden J.E., Premsrirut P., Luo W., Chicas A., Lee C.S., Kogan S.C., Lowe S.W. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011; 25 (20): 2125–36. DOI: https://doi.org/10.1101/gad.17276711

42. Anerillas C., Abdelmohsen K., Gorospe M. Regulation of senescence traits by MAPKs. GeroScience. 2020; 42 (2): 397–408. DOI: https://doi.org/10.1007/s11357-020-00183-3

43. Gankovskaya L.V., Artemyeva O.V., Grechenko V.V., Nasaeva E.D., Khasanova E.M. Age-associated diseases: the role of the inflammasome complex. Immunologiya. 2023; 44 (5): 640–52. DOI: https://doi.org/10.33029/1816-2134-2023-44-5-640-652

44. Yarbro J.R., Emmons R.S., Pence B.D. Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. Immunometabolism. 2020; 2 (3): e200026. DOI: https://doi.org/10.20900/immunometab20200026

45.Kang C., Xu Q., Martin T.D., Li M.Z., Demaria M., Aron L., Lu T., Yankner B.A., Campisi J., Elledge S.J. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015; 349 (6255): 1459. DOI: https://doi.org/10.1126/science.aaa5612

46.Xue W., Zender L., Miething C., Dickins R.A., Hernando E., Krizhanovsky V., Cordon-Cardo C., Lowe S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007; 445 (7128): 656–60. DOI: https://doi.org/10.1038/nature05529

47.Prata L.G.P.L., Ovsyannikova I.G., Tchkonia T., Kirkland J.L. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin. Immunol. 2018; 40. 101275. DOI: https://doi.org/10.1016/j.smim.2019.04.003

48.Manser A.R., Uhrberg M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol. Immunother. 2016; 65 (4): 417–26. DOI: https://doi.org/10.1007/s00262-015-1750-0

49.Acosta J., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J., Athineos D., Kang T., Lasitschka F., Andrulis M., Pascual G., Morris K., Khan S., Jin H., Dharmalingam G., Snijders A., Carroll T., Capper D., Pritchard C., Inman G., Longerich T., Sansom O., Benitah S., Zender L., Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013; 15 (8): 978–90. DOI: https://doi.org/10.1038/ncb2784

50.Senturk S., Mumcuoglu M., Gursoy-Yuzugullu O., Cingoz B., Akcali K.C., Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 2010; 52 (3): 966–74. DOI: https://doi.org/10.1002/hep.23769

51.Covre L., Martins R., Devine O., Chambers E., Vukmanovic-Stejic M., Silva J., Dietze R., Rodrigues R., de Matos Guedes H., Falqueto A., Akbar A., Gomes D. Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Front. Immunol. 2019; 9 (JAN): 1–12. DOI: https://doi.org/10.3389/fimmu.2018.03001

52.Fulop T., Larbi A., Pawelec G., Khalil A., Cohen A.A., Hirokawa K., Witkowski J.M., Franceschi C. Immunology of Aging: the Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2021.

53.Baker D., Wijshake T., Tchkonia T., Lebrasseur N., Childs B., Van De Sluis B., Kirkland J., Van Deursen J. Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479 (7372): 232–6. DOI: https://doi.org/10.1038/nature10600

54.Baker D., Childs B., Durik M., Wijers M., Sieben C., Zhong J.A., Saltness R., Jeganathan K., Verzosa G., Pezeshki A., Khazaie K., Miller J., Van Deursen J. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature. 2016; 530 (7589): 184–9. DOI: https://doi.org/10.1038/nature16932

55.Xu M., Bradley E.W., Weivoda M.M., Hwang S.M., Pirtskhalava T., Decklever T., Curran G.L., Ogrodnik M., Jurk D., Johnson K.O., Lowe V., Tchkonia T., Westendorf J.J., Kirkland J.L. Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J Gerontol A Biol Sci Med Sci. 2017; 72 (6): 780–5. DOI: https://doi.org/10.1093/gerona/glw154

56.Papaconstantinou J. The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells. 2019; 8 (11): 1383. DOI: https://doi.org/10.3390/cells8111383

57.Aguayo-Mazzucato C., Andle J., Lee T.B., Midha A., Talemal L., Chipashvili V., Hollister-Lock J., Deursen J. van, Weir G., Bonner-Weir S. Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019; 30 (1): 129–42.e4. DOI: https://doi.org/10.1016/j.cmet.2019.05.006

58.Nehme J., Borghesan M., Mackedenski S., Bird T.G., Demaria M. Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell. 2020; 19 (10): 1–14. DOI: https://doi.org/10.1111/acel.13237

59.Wikby A., Nilsson B.O., Forsey R., Thompson J., Strindhall J., Löfgren S., Ernerudh J., Pawelec G., Ferguson F., Johansson B. The immune risk phenotype is associated with IL-6 in the terminal decline stage: Findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev. 2006; 127 (8): 695–704. DOI: https://doi.org/10.1016/j.mad.2006.04.003

60.Pawelec G. T cells and aging: January 2002 update. Front Biosci. 2002; 7 (4): A831. DOI: https://doi.org/10.2741/A831

61.Costantini E., D’Angelo C., Reale M. The Role of Immunosenescence in Neurodegenerative Diseases. Mediators Inflamm. 2018; 2018: 6039171. DOI: https://doi.org/10.1155/2018/6039171

62.Liu Y., Sanoff H.K., Cho H., Burd C.E., Torrice C., Ibrahim J.G., Thomas N.E., Sharpless N.E. Expression of p16 INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009; 8 (4): 439–48. DOI: https://doi.org/10.1111/j.1474-9726.2009.00489.x

63.Martínez-Zamudio R.I., Dewald H.K., Vasilopoulos T., Gittens-Williams L., Fitzgerald-Bocarsly P., Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021; 20 (5): e13344. DOI: https://doi.org/10.1111/acel.13344

64.Monti D., Salvioli S., Capri M., Malorni W., Straface E., Cossarizza A., Botti B., Piacentini M., Baggio G., Barbi C., Valensin S., Bonafè M., Franceschi C. Decreased susceptibility to oxidative stress-induced apoptosis of peripheral blood mononuclear cells from healthy elderly and centenarians. Mech. Ageing Dev. 2001; 121 (1–3): 239–50. DOI: https://doi.org/10.1016/S0047-6374(00)00220-7

65.Onyema O.O., Njemini R., Bautmans I., Renmans W., Waele M., De Mets T. Cellular aging and senescence characteristics of human T-lymphocytes. Biogerontology. 2012; 13 (2): 169–81. DOI: https://doi.org/10.1007/s10522-011-9366-z

66.Crespo J., Sun H., Welling T.H., Tian Z., Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013; 25 (2): 214–21. DOI: https://doi.org/10.1016/j.coi.2012.12.003

67.Hall B., Balan V., Gleiberman A., Strom E., Krasnov P., Virtuoso L., Rydkina E., Vujcic S., Balan K., Gitlin I., Leonova K., Consiglio C., Gollnick S., Chernova O., Gudkov A. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany. NY). 2017; 9 (8): 1867–84. DOI: https://doi.org/10.18632/aging.101268

68.Yousefzadeh M., Flores R., Zhu Y., Schmiechen Z., Brooks R., Trussoni C., Cui Y., Angelini L., Lee K., McGowan S., Burrack A., Wang D., Dong Q., Lu A., Sano T., O’Kelly R., McGuckian C., Kato J., Bank M., Wade E., Pillai S., Klug J., Ladiges W., Burd C., Lewis S., LaRusso N., Vo N., Wang Y., Kelley E., Huard J., Stromnes I., Robbins P., Niedernhofer L. An aged immune system drives senescence and ageing of solid organs. Nature. 2021; 594 (7861): 100–5. DOI: https://doi.org/10.1038/s41586-021-03547-7

69.Montero J.C., Seoane S., Ocaña A., Pandiella A. Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors. Clin Cancer Res. 2011; 17 (17): 5546–52. DOI: https://doi.org/10.1158/1078-0432.CCR-10-2616

70. Sethi G., Rath P., Chauhan A., Ranjan A., Choudhary R., Ramniwas S., Sak K., Aggarwal D., Rani I., Tuli H.S. Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements. Pharmaceutics. 2023; 15 (2): 712. DOI: https://doi.org/10.3390/pharmaceutics15020712

71.Islam M.T., Tuday E., Allen S., Kim J., Trott D.W., Holland W.L., Donato A.J., Lesniewski L.A. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell. 2023; 22 (2): e13767. DOI: https://doi.org/10.1111/acel.13767

72.Musi N., Valentine J.M., Sickora K.R., Baeuerle E., Thompson C.S., Shen Q., Orr M.E. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018; 17 (6): e12840. DOI: https://doi.org/10.1111/acel.12840

73.Nambiar A., Kellogg D., Justice J., Goros M., Gelfond J., Pascual R., Hashmi S., Masternak M., Prata L., LeBrasseur N., Limper A., Kritchevsky S., Musi N., Tchkonia T., Kirkland J. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. eBioMedicine. 2023; 90 104481. DOI: https://doi.org/10.1016/j.ebiom.2023.104481

74.Hickson L., Langhi Prata L., Bobart S., Evans T., Giorgadze N., Hashmi S., Herrmann S., Jensen M., Jia Q., Jordan K., Kellogg T., Khosla S., Koerber D., Lagnado A., Lawson D., LeBrasseur N., Lerman L., McDonald K., McKenzie T., Passos J., Pignolo R., Pirtskhalava T., Saadiq I., Schaefer K., Textor S., Victorelli S., Volkman T., Xue A., Wentworth M., Wissler Gerdes E., Zhu Y., Tchkonia T., Kirkland J. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019; 47 446–56. DOI: https://doi.org/10.1016/j.ebiom.2019.08.069

75.Chaib S., Tchkonia T., Kirkland J.L. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022; 28 (8): 1556–68. DOI: https://doi.org/10.1038/s41591-022-01923-y

76.Zhu Y., Tchkonia T., Pirtskhalava T., Gower A., Ding H., Giorgadze N., Palmer A., Ikeno Y., Hubbard G., Lenburg M., O’hara S., Larusso N., Miller J., Roos C., Verzosa G., Lebrasseur N., Wren J., Farr J., Khosla S., Stout M., McGowan S., Fuhrmann-Stroissnigg H., Gurkar A., Zhao J., Colangelo D., Dorronsoro A., Ling Y., Barghouthy A., Navarro D., Sano T., Robbins P., Niedernhofer L., Kirkland J. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015; 14 (4): 644–58. DOI: https://doi.org/10.1111/acel.12344

77.Lopes-Paciencia S., Saint-Germain E., Rowell M.-C., Ruiz A.F., Kalegari P., Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019; 117: 15–22. DOI: https://doi.org/10.1016/j.cyto.2019.01.013

78.Moiseeva O., Deschênes-Simard X., St-Germain E., Igelmann S., Huot G., Cadar A.E., Bourdeau V., Pollak M.N., Ferbeyre G. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell. 2013; 12 (3): 489–98. DOI: https://doi.org/10.1111/acel.12075

79.Campbell J.M., Bellman S.M., Stephenson M.D., Lisy. K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res. Rev. 2017; 40: 31–44. DOI: https://doi.org/10.1016/j.arr.2017.08.003

80.Amor C., Feucht J., Leibold J., Ho Y., Zhu C., Alonso-Curbelo D., Mansilla-Soto J., Boyer J., Li X., Giavridis T., Kulick A., Houlihan S., Peerschke E., Friedman S., Ponomarev V., Piersigilli A., Sadelain M., Lowe S. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020; 583 (7814): 127–32. DOI: https://doi.org/10.1038/s41586-020-2403-9

81.Suda M., Shimizu I., Katsuumi G., Yoshida Y., Hayashi Y., Ikegami R., Matsumoto N., Yoshida Y., Mikawa R., Katayama A., Wada J., Seki M., Suzuki Y., Iwama A., Nakagami H., Nagasawa A., Morishita R., Sugimoto M., Okuda S., Tsuchida M., Ozaki K., Nakanishi-Matsui M., Minamino T. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021; 1 (12): 1117–26. DOI: https://doi.org/10.1038/s43587-021-00151-2

82.Wang T.W., Johmura Y., Suzuki N., Omori S., Migita T., Yamaguchi K., Hatakeyama S., Yamazaki S., Shimizu E., Imoto S., Furukawa Y., Yoshimura A., Nakanishi M. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022; 611 (7935): 358–64. DOI: https://doi.org/10.1038/s41586-022-05388-4

83.Thapa R.K., Nguyen H.T., Jeong J.-H., Kim J.R., Choi H.-G., Yong C.S., Kim J.O. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep. 2017; 7 (1): 43299. DOI: https://doi.org/10.1038/srep43299

84.Yang D., Sun B., Li S., Wei W., Liu X., Cui X., Zhang X., Liu N., Yan L., Deng Y., Zhao X. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med. 2023; 15 (709): DOI: https://doi.org/10.1126/scitranslmed.add1951

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»