Role of macrophages in the pathogenesis of pulmonary fibrosis

Abstract

Pulmonary fibrosis is a pathological process that is characterized by the proliferation of scar tissue in the lung parenchyma, leading to the destruction of alveolar structures and the development of respiratory failure. The growing number of patients with pulmonary fibrosis, including after the COVID-19 pandemic, and the lack of effective treatment methods dictate the need for a deeper understanding of the pathogenesis of this pathology. At the same time, increasing attention is being paid to research into the immune mechanisms of fibrosis development. Macrophages in the lung tissue are heterogeneous population of cells that differ in location, origin and function. They play a key role in the pathogenesis of pulmonary fibrosis. The review presents current data on various subtypes of pulmonary macrophages, their role in the fibrotic process, as well as some mechanisms regulating the process of fibrogenesis.

Keywords:macrophages; pulmonary fibrosis; COVID-19; profibrotic activity

For citation: Maksimova A.A., Shevela E.Ya., Chernykh E.R. Role of macrophages in the pathogenesis of pulmonary fibrosis. Immunologiya. 2024; 45 (2): 235–44. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-235-244 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation No. 23-25-00349 (https://rscf.ru/project/23-25-00349).

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Writing the draft – Maksimova А.А.; editing – Chernykh E.R., Shevela E.Ya.

References

1.Lassan S., Tesar T., Tisonova J., Lassanova M. Pharmacological approaches to pulmonary fibrosis following COVID-19. Front Pharmacol. 2023; 14: 1143158. DOI: https://doi.org/10.3389/fphar.2023.1143158

2.Pashchenkov M.V., Khaitov M.R. Immune response against epidemic coronaviruses. Immunologiya. 2020, 41 (1): 5–18. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-5-18 (in Russian)

3.Bazdyrev E., Rusina P., Panova M., Novikov F., Grishagin I., Nebolsin V. Lung Fibrosis after COVID-19: Treatment Prospects. Pharmaceuticals (Basel). 2021; 14 (8): 807. DOI: https://doi.org/10.3390/ph14080807

4.Koudelka A., Cechova V., Rojas M., Mitash N., Bondonese A., St Croix C., Ross M.A., Freeman B.A. Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol. 2022; 50: 102226. DOI: https://doi.org/10.1016/j.redox.2021.102226

5. Ongenaert M., Dupont S., Blanqué R., Brys R., van der Aar E., Heckmann B. Strong reversal of the lung fibrosis disease signature by autotaxin inhibitor GLPG1690 in a mouse model for IPF. Eur Respir J. 2016; 48: OA4540. DOI: https://doi.org/10.1183/13993003.congress-2016.OA4540

6.Mikkelsen L.F., Rubak S. Reversible lung fibrosis in a 6-year-old girl after long term nitrofurantoin treatment. BMC Pulm Med. 2020; 20: 313. DOI: https://doi.org/10.1186/s12890-020-01353-x

7.Chang C.H., Juan Y.H., Hu H.C., Kao K.C., Lee C.S. Reversal of lung fibrosis: an unexpected finding in survivor of acute respiratory distress syndrome. QJM. 2018; 111 (1): 47–8. DOI: https://doi.org/10.1093/qjmed/hcx190

8.Patrucco F., Solidoro P., Gavelli F., Apostolo D., Bellan M. Idiopathic Pulmonary Fibrosis and Post-COVID-19 Lung Fibrosis: Links and Risks. Microorganisms. 2023; 11 (4): 895. DOI: https://doi.org/10.3390/microorganisms11040895

9.Lu Q., El-Hashash A.H.K. Cell-based therapy for idiopathic pulmonary fibrosis. Stem Cell Investig. 2019; 6: 22. DOI: https://doi.org/10.21037/sci.2019.06.09

10.Liegeois M., Legrand C., Desmet C.J., Marichal T., Bureau F. The interstitial macrophage: A long-neglected piece in the puzzle of lung immunity. Cell Immunol. 2018; 330: 91–6. DOI: https://doi.org/10.1016/j.cellimm.2018.02.001

11.Sabatel C., Radermecker C., Fievez L., Paulissen G., Chakarov S., Fernandes C., Olivier S., Toussaint M., Pirottin D., Xiao X., Quatresooz P., Sirard J.C., Cataldo D., Gillet L., Bouabe H., Desmet C.J., Ginhoux F., Marichal T., Bureau F. Exposure to Bacterial CpG DNA Protects from Airway Allergic Inflammation by Expanding Regulatory Lung Interstitial Macrophages. Immunity. 2017; 46 (3): 457–73. DOI: https://doi.org/10.1016/j.immuni.2017.02.016

12.Yu Y.R., Hotten D.F., Malakhau Y., Volker E., Ghio A.J., Noble P.W., Kraft M., Hollingsworth J.W., Gunn M.D., Tighe R.M. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. Am J Respir Cell Mol Biol. 2016; 54 (1): 13–24. DOI: https://doi.org/10.1165/rcmb.2015-0146OC

13.Desch A.N., Gibbings S.L., Goyal R., Kolde R., Bednarek J., Bruno T., Slansky J.E., Jacobelli J., Mason R., Ito Y., Messier E., Randolph G.J., Prabagar M., Atif S.M., Segura E., Xavier R.J., Bratton D.L., Janssen W.J., Henson P.M., Jakubzick C.V. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes. Am J Respir Crit Care Med. 2016; 193 (6): 614–26. DOI: https://doi.org/10.1164/rccm.201507-1376OC

14.Guilliams M., De Kleer I., Henri S., Post S., Vanhoutte L., De Prijck S., Deswarte K., Malissen B., Hammad H., Lambrecht B.N. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 2013; 210 (10): 1977–92. DOI: https://doi.org/10.1084/jem.20131199

15.Janssen W.J., Barthel L., Muldrow A., Oberley-Deegan R.E., Kearns M.T., Jakubzick C., Henson P.M. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med. 2011; 184 (5): 547–60. DOI: https://doi.org/10.1164/rccm.201011-1891OC

16.Machiels B., Dourcy M., Xiao X., Javaux J., Mesnil C., Sabatel C., Desmecht D., Lallemand F., Martinive P., Hammad H., Guilliams M., Dewals B., Vanderplasschen A., Lambrecht B.N., Bureau F., Gillet L. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat Immunol. 2017; 18 (12): 1310–20. DOI: https://doi.org/10.1038/ni.3857

17.Schneider C., Nobs S.P., Kurrer M., Rehrauer H., Thiele C., Kopf M. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol. 2014; 15 (11): 1026–37. DOI: https://doi.org/10.1038/ni.3005

18.Sennello J.A., Misharin A.V., Flozak A.S., Berdnikovs S., Cheresh P., Varga J., Kamp D.W., Budinger G.R., Gottardi C.J., Lam A.P. Lrp5/β-Catenin Signaling Controls Lung Macrophage Differentiation and Inhibits Resolution of Fibrosis. Am J Respir Cell Mol Biol. 2017; 56 (2): 191–201. DOI: https://doi.org/10.1165/rcmb.2016-0147OC

19.Misharin A.V., Morales-Nebreda L., Reyfman P.A., Cuda C.M., Walter J.M., McQuattie-Pimentel A.C., Chen C.I., Anekalla K.R., Joshi N., Williams K.J.N., Abdala-Valencia H., Yacoub T.J., Chi M., Chiu S., Gonzalez-Gonzalez F.J., Gates K., Lam A.P., Nicholson T.T., Homan P.J., Soberanes S., Dominguez S., Morgan V.K., Saber R., Shaffer A., Hinchcliff M., Marshall S.A., Bharat A., Berdnikovs S., Bhorade S.M., Bartom E.T., Morimoto R.I., Balch W.E., Sznajder J.I., Chandel N.S., Mutlu G.M., Jain M., Gottardi C.J., Singer B.D., Ridge K.M., Bagheri N., Shilatifard A., Budinger G.R.S., Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017; 214 (8): 2387–404. DOI: https://doi.org/10.1084/jem.20162152

20.Bharat A., Bhorade S.M., Morales-Nebreda L., McQuattie-Pimentel A.C., Soberanes S., Ridge K., DeCamp M.M., Mestan K.K., Perlman H., Budinger G.R., Misharin A.V. Flow Cytometry Reveals Similarities Between Lung Macrophages in Humans and Mice. Am J Respir Cell Mol Biol. 2016; 54 (1): 147–9. DOI: https://doi.org/10.1165/rcmb.2015-0147LE

21.Evren E., Ringqvist E., Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020; 160 (2): 126–38. DOI: https://doi.org/10.1111/imm.13154

22.Gibbings S.L., Thomas S.M., Atif S.M., McCubbrey A.L., Desch A.N., Danhorn T., Leach S.M., Bratton D.L., Henson P.M., Janssen W.J., Jakubzick C.V. Three Unique Interstitial Macrophages in the Murine Lung at Steady State. Am J Respir Cell Mol Biol. 2017; 57 (1): 66–76. DOI: https://doi.org/10.1165/rcmb.2016-0361OC

23.Chakarov S., Lim H.Y., Tan L., Lim S.Y., See P., Lum J., Zhang X.M., Foo S., Nakamizo S., Duan K., Kong W.T., Gentek R., Balachander A., Carbajo D., Bleriot C., Malleret B., Tam J.K.C., Baig S., Shabeer M., Toh S.E.S., Schlitzer A., Larbi A., Marichal T., Malissen B., Chen J., Poidinger M., Kabashima K., Bajenoff M., Ng L.G., Angeli V., Ginhoux F. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science. 2019; 363 (6432): eaau0964. DOI: https://doi.org/10.1126/science.aau0964

24. Schyns J., Bai Q., Ruscitti C., Radermecker C., De Schepper S., Chakarov S., Farnir F., Pirottin D., Ginhoux F., Boeckxstaens G., Bureau F., Marichal T. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nat Commun. 2019; 10 (1): 3964. DOI: https://doi.org/10.1038/s41467-019-11843-0

25.Aegerter H., Kulikauskaite J., Crotta S., Patel H., Kelly G., Hessel E.M., Mack M., Beinke S., Wack A. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat Immunol. 2020; 21 (2): 145–57. DOI: https://doi.org/10.1038/s41590-019-0568-x

26.Shilovsky I.P., Nikolsky A.A., Nikonova A.A., Gaisina A.R., Vishnyakova L.I., Barvinskaya E.D., Kovchina V.I., Bolotova S.I., Yumashev K.V., Brylina V.E., Khaitov M.R. Infection of mice with respiratory syncytial virus causing airway dysfunction associated with inflammation in lung tissue as a model of human pathology. Immunologiya. 2019; 40 (5): 72–83. DOI: https://doi.org/10.24411/0206-4952-2019-15008 (in Russian)

27.Joshi N., Watanabe S., Verma R., Jablonski R.P., Chen C.I., Cheresh P., Markov N.S., Reyfman P.A., McQuattie-Pimentel A.C., Sichizya L., Lu Z., Piseaux-Aillon R., Kirchenbuechler D., Flozak A.S., Gottardi C.J., Cuda C.M., Perlman H., Jain M., Kamp D.W., Budinger G.R.S., Misharin A.V. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J. 2020; 55 (1): 1900646. DOI: https://doi.org/10.1183/13993003.00646-2019

28.McCubbrey A.L., Barthel L., Mohning M.P., Redente E.F., Mould K.J., Thomas S.M., Leach S.M., Danhorn T., Gibbings S.L., Jakubzick C.V., Henson P.M., Janssen W.J. Deletion of c-FLIP from CD11bhi Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. Am J Respir Cell Mol Biol. 2018; 58 (1): 66–78. DOI: https://doi.org/10.1165/rcmb.2017-0154OC

29.Wendisch D., Dietrich O., Mari T., von Stillfried S., Ibarra I.L., Mittermaier M., Mache C., Chua R.L., Knoll R., Timm S., Brumhard S., Krammer T., Zauber H., Hiller A.L., Pascual-Reguant A., Kazmierski J., Radke J., Pergantis P., Baßler K., Conrad C., Aschenbrenner A.C., Sawitzki B., Radbruch H., Ochs M., Eils R., Müller-Redetzky H., Hauser A.E., Luecken M.D., Theis F.J., Conrad C., Wolff T., Boor P., Selbach M., Saliba A.E., Sander L.E. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021; 184 (26): 6243–61.e27. DOI: https://doi.org/10.1016/j.cell.2021.11.033

30.Bharat A., Querrey M., Markov N.S., Kim S., Kurihara C., Garza-Castillon R., Manerikar A., Shilatifard A., Tomic R., Politanska Y., Abdala-Valencia H., Yeldandi A.V., Lomasney J.W., Misharin A.V., Scott Budinger G.R. Lung transplantation for patients with severe COVID-19. Sci Transl Med. 2020; 12 (574): eabe4282. DOI: https://doi.org/10.1126/scitranslmed.abe4282

31.Gibbons M.A., MacKinnon A.C., Ramachandran P., Dhaliwal K., Duffin R., Phythian-Adams A.T., van Rooijen N., Haslett C., Howie S.E., Simpson A.J., Hirani N., Gauldie J., Iredale J.P., Sethi T., Forbes SJ. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011; 184 (5): 569–81. DOI: https://doi.org/10.1164/rccm.201010-1719OC

32.Gharaee-Kermani M., McCullumsmith R.E., Charo I.F., Kunkel S.L., Phan S.H. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine. 2003; 24 (6): 266–76. DOI: https://doi.org/10.1016/j.cyto.2003.08.003

33.Groves A.M., Johnston C.J., Williams J.P., Finkelstein J.N. Role of Infiltrating Monocytes in the Development of Radiation-Induced Pulmonary Fibrosis. Radiat Res. 2018; 189 (3): 300–11. DOI: https://doi.org/10.1667/RR14874.1

34.Choi S.M., Mo Y., Bang J.Y., Ko Y.G., Ahn Y.H., Kim H.Y., Koh J., Yim J.J., Kang H.R. Classical monocyte-derived macrophages as therapeutic targets of umbilical cord mesenchymal stem cells: comparison of intratracheal and intravenous administration in a mouse model of pulmonary fibrosis. Respir Res 2023; 24 (1): 68. DOI: https://doi.org/10.1186/s12931-023-02357-x

35.Gurczynski S.J., Procario M.C., O’Dwyer D.N., Wilke C.A., Moore B.B. Loss of CCR2 signaling alters leukocyte recruitment and exacerbates γ-herpesvirus-induced pneumonitis and fibrosis following bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol. 2016; 311 (3): L611–27. DOI: https://doi.org/10.1152/ajplung.00193.2016

36.McCowan J., Fercoq F., Kirkwood P.M., T’Jonck W., Hegarty L.M., Mawer C.M., Cunningham R., Mirchandani A.S., Hoy A., Humphries D.C., Jones G.R., Hansen C.G., Hirani N., Jenkins S.J., Henri S., Malissen B., Walmsley S.R., Dockrell D.H., Saunders P.T.K., Carlin L.M., Bain C.C. The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Sci Immunol. 2021; 6 (65): eabj2132. DOI: https://doi.org/10.1126/sciimmunol.abj2132

37.Meziani L., Mondini M., Petit B., Boissonnas A., Thomas de Montpreville V., Mercier O., Vozenin M.C., Deutsch E. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respir J. 2018; 51 (3): 1702120. DOI: https://doi.org/10.1183/13993003.02120-2017

38.Rendeiro A.F., Ravichandran H., Bram Y., Chandar V., Kim J., Meydan C., Park J., Foox J., Hether T., Warren S., Kim Y., Reeves J., Salvatore S., Mason C.E., Swanson E.C., Borczuk A.C., Elemento O., Schwartz R.E. The spatial landscape of lung pathology during COVID-19 progression. Nature. 2021; 593 (7860): 564–9. DOI: https://doi.org/10.1038/s41586-021-03475-6

39.Aran D., Looney A.P., Liu L., Wu E., Fong V., Hsu A., Chak S., Naikawadi R.P., Wolters P.J., Abate A.R., Butte A.J., Bhattacharya M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019; 20 (2): 163–72. DOI: https://doi.org/10.1038/s41590-018-0276-y

40.Joshi S., Singh A.R., Wong S.S., Zulcic M., Jiang M., Pardo A., Selman M., Hagood J.S., Durden D.L. Rac2 is required for alternative macrophage activation and bleomycin induced pulmonary fibrosis; a macrophage autonomous phenotype. PLoS One. 2017; 12 (8): e0182851. DOI: https://doi.org/10.1371/journal.pone.0182851

41.Morse C., Tabib T., Sembrat J., Buschur K.L., Bittar H.T., Valenzi E., Jiang Y., Kass D.J., Gibson K., Chen W., Mora A., Benos P.V., Rojas M., Lafyatis R. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 2019; 54 (2): 1802441. DOI: https://doi.org/10.1183/13993003.02441-2018

42.Hou J., Shi J., Chen L., Lv Z., Chen X., Cao H., Xiang Z., Han X. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal. 2018; 16 (1): 89. DOI: https://doi.org/10.1186/s12964-018-0300-8

43.Zhao J., Okamoto Y., Asano Y., Ishimaru K., Aki S., Yoshioka K., Takuwa N., Wada T., Inagaki Y., Takahashi C., Nishiuchi T., Takuwa Y. Sphingosine-1-phosphate receptor-2 facilitates pulmonary fibrosis through potentiating IL-13 pathway in macrophages. PLoS One. 2018; 13 (5): e0197604. DOI: https://doi.org/10.1371/journal.pone.0197604

44.Gharib S.A., Johnston L.K., Huizar I., Birkland T.P., Hanson J., Wang Y., Parks W.C., Manicone A.M. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis. J Leukoc Biol. 2014; 95 (1): 9–18. DOI: https://doi.org/10.1189/jlb.1112587

45.Wang Y., Zhang L., Wu G.R., Zhou Q., Yue H., Rao L.Z., Yuan T., Mo B., Wang F.X., Chen L.M., Sun F., Song J., Xiong F., Zhang S, Yu Q., Yang P., Xu Y., Zhao J., Zhang H., Xiong W., Wang C.Y. MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci Adv. 2021; 7 (1): eabb6075. DOI: https://doi.org/10.1126/sciadv.abb6075

46.Zhang W., Ohno S., Steer B., Klee S., Staab-Weijnitz C.A., Wagner D., Lehmann M., Stoeger T., Königshoff M., Adler H. S100a4 Is Secreted by Alternatively Activated Alveolar Macrophages and Promotes Activation of Lung Fibroblasts in Pulmonary Fibrosis. Front Immunol. 2018; 9: 1216. DOI: https://doi.org/10.3389/fimmu.2018.01216

47.Ucero A.C., Bakiri L., Roediger B., Suzuki M., Jimenez M., Mandal P., Braghetta P., Bonaldo P., Paz-Ares L., Fustero-Torre C., Ximenez-Embun P., Hernandez A.I., Megias D., Wagner E.F. Fra-2-expressing macrophages promote lung fibrosis in mice. J Clin Invest. 2019; 129 (8): 3293–309. DOI: https://doi.org/10.1172/JCI125366

48.Svedberg F.R., Brown S.L., Krauss M.Z., Campbell L., Sharpe C., Clausen M., Howell G.J., Clark H., Madsen J., Evans C.M., Sutherland T.E., Ivens A.C., Thornton D.J., Grencis R.K., Hussell T., Cunoosamy D.M., Cook P.C., MacDonald A.S. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol. 2019; 20 (5): 571–80. DOI: https://doi.org/10.1038/s41590-019-0352-y

49.Trujillo G., O’Connor E.C., Kunkel S.L., Hogaboam C.M. A novel mechanism for CCR4 in the regulation of macrophage activation in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2008; 172 (5): 1209–21. DOI: https://doi.org/10.2353/ajpath.2008.070832

50.Hong S.Y., Lu Y.T., Chen S.Y., Hsu C.F., Lu Y.C., Wang C.Y., Huang K.L. Targeting pathogenic macrophages by the application of SHP-1 agonists reduces inflammation and alleviates pulmonary fibrosis. Cell Death Dis. 2023; 14 (6): 352. DOI: https://doi.org/10.1038/s41419-023-05876-z

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»