The role of the triad of respiratory epithelial cell-derived cytokines in the pathogenesis of allergic rhinitis

Abstract

Allergic rhinitis (AR) is an inflammatory disease of the nasal mucosa, which affects up to 30 % in Europe and 20 % in Russian Federation. Despite the fact that AR is not a severe pathology it causes significant economic issue (1–1.5 billion euros is annual direct costs of AR treatment in European Union). Moreover, 40 % of patients with AR subsequently develop more severe disabling pathology – bronchial asthma (annual mortality reaches up to 300,000 people worldwide). Approaches to AR therapy include pharmacotherapy with corticosteroids, histamine H1 receptor blockers and leukotriene antagonists, and allergen-specific immunotherapy. However, current treatments are insufficient, as evidenced by the continuing rise in morbidity. The search for new ways to prevent and control of this disease is an urgent task.

According to the current knowledge, the main role in AR pathogenesis play immune cells: Th2-lymphocytes, B-cells and eosinophils, which secrete proinflammatory cytokines (mainly IL-4, IL-5 and IL-13) and other inflammatory factors that induce manifestations of the pathology. However, with the development of new molecular methods a lot of evidence has been accumulated for the participation of epithelial cells of the respiratory tract and proinflammatory cytokines derived from them (IL-25, IL-33 and TSLP) in the pathogenesis of AR. In the current review, we summarize the data on the role of the triad of epithelial cell-derived cytokines in the pathogenesis of AR.

Keywords:allergic rhinitis; epithelial cytokines; IL-25; IL-33; TSLP

For citation: Shilovskiy I.P., Timotievich E.D., Kaganova M.M., Pasikhov G.B., Tahanovich A.D., Kadushkin A.G., Gudima G.O., Khaitov M.R. The role of the triad of respiratory epithelial cell-derived cytokines in the pathogenesis of allergic rhinitis. Immunologiya. 2024; 45 (2): 245–55. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-245-255 (in Russian)

Funding. The study was supported by Russian Science Foundation grant No. 23-45-10031 (https://rscf.ru/project/23-45-10031).

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. All authors have contributed equally to the study, read the final version of the article and agreed with its contents.

References

1. Bousquet J., Anto J.M., Bachert C., Baiardini I., Bosnic-Anticevich S., Walter Canonica G., Melén E., Palomares O., Scadding G.K., Togias A., Toppila-Salmi S. Allergic rhinitis. Nat Rev Dis Primers. 2020; 6 (1): 95. DOI: https://doi.org/10.1038/s41572-020-00227-0

2. Kozulina I.E., Kurbacheva O.M., Ilina N.I. Allergies today. Analysis of new epidemiological data. Russian Allergological Journal. 2014; 3: 3–10. URL: https://rusalljournal.ru/raj/issue/view/38 (in Russian)

3. Khaitov R.M., Pinegin B.V., Pashenkov M.V. Epithelial cells of the respiratory tract as equal participants of innate immunity and potential targets for immunotropic drugs. Immunologiya. 2020; 41 (2): 107–13. DOI: https://doi.org/10.33029/0206-4952-2020-41-2-107-113 (in Russian)

4. Pinegin B.V., Pashenkov M.V., Pinegin V.B., Khaitov R.M. Mucosal epithelial cells and novel approaches to immunoprophylaxy and immunotherapy of infectious diseases. Immunologiya. 2020; 41 (6): 486–500. DOI: https://doi.org/10.33029/0206-4952-2020-41-6-486-500 (in Russian)

5. Meng Y., Chengshuo W., Luo Z. Recent developments and highlights in allergic rhinitis. Allergy. 2019; 74: 2320–8. DOI: https://doi.org/10.1111/ALL.14067

6. Kato A. Group 2 Innate Lymphoid Cells in Airway Diseases. Chest. 2019; 156: 141–9. DOI: https://doi.org/10.1016/j.chest.2019.04.101

7. Neill D.R., Wong S.H., Bellosi A., Flynn R.J., Daly M., Langford T.K., Bucks C., Kane C.M., Fallon P.G., Pannell R., Jolin H.E., McKenzie A.N. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010; 464: 1367–70. DOI: https://doi.org/10.1038/nature08900

8. Hong H., Liao S., Chen F., Yang Q., Wang D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75: 2794–804. DOI: https://doi.org/10.1111/all.14526

9. Akasaki S., Matsushita K., Kato Y., Fukuoka A., Iwasaki N., Nakahira M., Fujieda S., Yasuda K., Yoshimoto T. Murine allergic rhinitis and nasal th2 activation are mediated via tslp- and il-33-signaling pathways. Int Immunol. 2016; 28 (2): 65–76. DOI: https://doi.org/10.1093/intimm/dxv055

10. Vannella K.M., Ramalingam T.R., Borthwick L.A., Barron L., Hart K.M., Thompson R.W., Kindrachuk K.N., Cheever A.W., White S., Budelsky A.L., Comeau M.R., Smith D.E., Wynn T.A. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. 2016; 337 (8): 337–65. DOI: https://doi.org/10.1126/scitranslmed.aaf1938

11. Ding W., Zou G.L., Zhang W., Lai X.N., Chen H.W., Xiong L.X. Interleukin-33: Its emerging role in allergic diseases. Molecules. 2018; 23:1–16. DOI: https://doi.org/10.3390/molecules23071665

12. Akasaki S., Yoshimoto T. The Role of TSLP in Experimental Allergic Rhinitis. J Allergy Clin Immunol. 2015; 135–47. DOI: https://doi.org/10.1016/j.jaci.2014.12.1418

13. Xu M., Dong C. IL-25 in allergic inflammation. Immunol Rev. 2017; 278: 185–91. DOI: https://doi.org/10.1111/imr.12558

14. Yao X.J., Liu X.F., Wang X.D. Potential Role of Interleukin-25/Interleukin-33/Thymic Stromal Lymphopoietin-Fibrocyte Axis in the Pathogenesis of Allergic Airway Diseases. Chin Med J (Engl). 2018; 131: 1983–9. DOI: https://doi.org/10.4103/0366-6999.238150

15. Von Moltke J., Ji M., Liang H.E., Locksley R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 2016; 529: 221–5. DOI: https://doi.org/10.1038/nature16161

16. Kortekaas K.I., Shikhagaie M.M., Golebski K., Bernink J.H., Breynaert C., Creyns B., Diamant Z., Fokkens W. J., Gevaert P., Hellings P., Hendriks R.W., Klimek L., Mjosberg J., Morita H., Ogg G.S., O’Mahony L., Schwarze J., Seys S.F., Shamji1 M.H., Bal S.M. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy. 2018; 73: 837–50. DOI: https://doi.org/10.1111/all.13340

17. Kohanski M.A., Workman A.D., Patel N.N., Hung L.Y., Shtraks J.P., Chen B., Blasetti M., Doghramji L., Kennedy D.W., Adappa N.D., Palmer J.N., Herbert D.R., Cohen N.A. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018; 142: 460–9. DOI: https://doi.org/10.1016/j.jaci.2018.03.019

18. Kurbacheva O.M., Dyneva M.E., Shilovskiy I.P., Savlevich E.L., Kovchina V.I., Nikolskiy A.A., Savushkina E.Yu., Khaitov M.R. Pathogenetic molecular mechanisms of chronic rhinosinusitis with nasal polyps associated with asthma. Pulmonologiya. 2021; 31: 7–19. DOI: https://doi.org/10.18093/0869-0189-2021-31-1-7-19 (in Russian)

19. Kouzaki H., Tojima I., Kita H., Shimizu T. Transcription of Interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol. 2013; 49: 741–50. DOI: https://doi.org/10.1165/rcmb.2012-0304OC

20. Ihara F., Sakurai D., Yonekura S., Iinuma T., Yagi R., Sakurai T., Ito T., Matsuura A., Morimoto Y., Arai T., Suzuki S., Katayama K., Nakayama T., Okamoto Y. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy. 2018; 73: 1823–32. DOI: https://doi.org/10.1111/all.13436

21. Wang E., Liu X., Tu W., Do D.C., Yu H., Yang L., Zhou Y., Xu D., Huang S.-K., Yang P., Ran P., Gao P.-S., Liu Z. Benzo(a)pyrene facilitates dermatophagoides group 1 (Der f 1)-induced epithelial cytokine release through aryl hydrocarbon receptor in asthma. Allergy. 2019; 74: 1675–90. DOI: https://doi.org/10.1111/all.13784

22. Hong H.Y., Chen F.H., Sun Y.Q., Hu X.T., Wei Y., Fan Y.P., Zhang J., Wang D.-H, Xu R., Li H.-B., Shi J.-B. Local IL-25 contributes to Th2-biased inflammatory profiles in nasal polyps. Allergy. 2018; 73: 459–69. DOI: https://doi.org/10.1111/all.13267

23. Cheung P.F.Y, Wong C.K., Ip W.K., Lam C.W.K. IL-25 regulates the expression of adhesion molecules on eosinophils: Mechanism of eosinophilia in allergic inflammation. Allergy. 2006; 61: 878–85. DOI: https://doi.org/10.1111/j.1398-9995.2006.01102.x

24. Tojima I., Matsumoto K., Kikuoka H., Hara S., Yamamoto S., Shimizu S., Kouzaki H., Shimizu T. Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis. Allergy. 2019; 74: 2417–26. DOI: https://doi.org/10.1111/all.13974

25. Yu Q.N., Guo Y.B., Li X., Li C.L., Tan W.P., Fan X.L., Qin Z.L., Chen D., Wen W.P., Zheng S.G., Fu Q.L. ILC2 frequency and activity are inhibited by glucocorticoid treatment via STAT pathway in patients with asthma. Allergy. 2018; 73: 1860–70. DOI: https://doi.org/10.1111/all.13438

26. Xu X., Ong Y.K., Wang D.Y. Novel findings in immunopathophysiology of chronic rhinosinusitis and their role in a model of precision medicine. Allergy. 2020; 75: 769–80. DOI: https://doi.org/10.1111/all.14044

27. Cheng D., Xue Z., Yi L., Shi H., Zhang K., Huo X., Bonser L.R., Zhao J., Xu Y., Erle D.J., Zhen G. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med. 2014; 190: 639–48. DOI: https://doi.org/10.1164/rccm.201403-0505OC

28. Zhou X., Wei T., Cox C.W., Jiang Y., Roche W.R., Walls A.F. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy. 2019; 74: 1266–76. DOI: https://doi.org/10.1111/all.13666

29. Patel N.N., Kohanski M.A., Maina I.W., Workman A.D., Herbert D.R., Cohen N.A. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol. 2019; 9: 93–9. DOI: https://doi.org/10.1002/alr.22206

30. Nikonova A., Shilovskiy I., Galitskaya M., Sokolova A., Sundukova M., Dmitrieva-Posocco O., Mitin A., Komogorova V., Litvina M., Sharova N., Zhernov Y., Kudlay D., Dvornikov A., Kurbacheva O., Khaitov R., Khaitov M. Respiratory syncytial virus upregulates IL-33 expression in mouse model of virus-induced inflammation exacerbation in OVA-sensitized mice and in asthmatic subjects. Cytokine. 2021; 138: 1–10. DOI: https://doi.org/10.1016/j.cyto.2020.155349

31. Iinuma T., Okamoto Y., Morimoto Y., Arai T., Sakurai T., Yonekura S., Sakurai D., Hirahara K., Nakayama T. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy. 2018; 73: 479–89. DOI: https://doi.org/10.1111/all.13295

32. Perkins T.N., Oczypok E.A., Milutinovic P.S., Dutz R.E., Oury T.D. RAGE-dependent VCAM-1 expression in the lung endothelium mediates IL-33-induced allergic airway inflammation. Allergy. 2019; 74: 89–99. DOI: https://doi.org/10.1111/all.13500

33. Carriere V., Roussel L., Ortega N., Lacorre D.A., Americh L., Aguilar L., Bouche G., Girard P.-J. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. 2007; 104 (1): 282–7. DOI: 10.1073/pnas.0606854104

34. Drake L.Y., Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017; 278: 173–84. DOI: https://doi.org/10.1111/imr.12552

35. Khaitov M.R., Gaisina A.R., Shilovskiy I.P., Smirnov V.V., Ramenskaia G.V., Nikonova A.A., Khaitov R.M. The role of interleukin-33 in pathogenesis of bronchial asthma. New experimental data. Biochemistry (Moscow). 2018; 83: 13–25. DOI: https://doi.org/10.1134/S0006297918010029

36. Uchida M., Anderson E.L., Squillace D.L., Patil N., Maniak P.J., Iijima K., Kita H., O’Grady S.M. Oxidative stress serves as a key checkpoint for IL-33 release by airway epithelium. Allergy. 2017; 72: 1521–31. DOI: https://doi.org/10.1111/all.13158

37. Anderson E.L., Kobayashi T., Iijima K., Bartemes K.R., Chen C.C., Kita H. IL-33 mediates reactive eosinophilopoiesis in response to airborne allergen exposure. Allergy. 2016; 71: 977–88. DOI: https://doi.org/10.1111/all.12861

38. Hesse L., van Ieperen N., Habraken C., Petersen A.H., Korn S., Smilda T., Goedewaagen B., Ruiters M.H., van der Graaf A.C., Nawijn M.C. Subcutaneous immunotherapy with purified Der p1 and 2 suppresses type 2 immunity in a murine asthma model. Allergy. 2018; 73: 862–74. DOI: https://doi.org/10.1111/all.13382

39. Wu Y.H., Lai A.C.Y, Chi P.Y., Thio C.L.P., Chen W.Y., Tsai C.H., Lee Y.L., Lukacs N.W., Chang Y.-J. Pulmonary IL-33 orchestrates innate immune cells to mediate respiratory syncytial virus-evoked airway hyperreactivity and eosinophilia. Allergy. 2020; 75: 818–30. DOI: https://doi.org/10.1111/all.14091

40. Kim E.H., Kim J.H., Samivel R., Bae J.S., Chung Y.J., Chung P.S., Lee S.E., Mo J.-H. Intralymphatic treatment of flagellin-ovalbumin mixture reduced allergic inflammation in murine model of allergic rhinitis. Allergy. 2016; 71: 629–39. DOI: https://doi.org/10.1111/all.12839

41. Takai T. TSLP Expression: Cellular Sources, Triggers, and Regulatory Mechanisms. Allergol Int. 2012; 61 (1): 3–17. DOI: https://doi.org/10.2332/allergolint.11-RAI-0395

42. Chen X., Deng R., Chi W., Hua X., Lu F., Bian F., Gao N., Li Z., Pflugfelder S.C., de Paiva C.S., Li D.-Q. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model. Allergy. 2019; 74: 910–21. DOI: https://doi.org/10.1111/all.13691

43. Christenson S.A., Steiling K., Van Den Berge M., Hijazi K., Hiemstra P.S., Postma D.S., Lenburg M.E., Spira A., Woodruff P.G. Asthma-COPD overlap: Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015; 191: 758–66. DOI: https://doi.org/10.1164/rccm.201408-1458OC

44. Maruyama N, Takai T, Kamijo S, Suchiva P, Ohba M, Takeshige T, Suzuki M., Hara M., Matsuno K., Harada S., Harada N., Nakae S., Sudo K., Okuno T., Yokomizo T., Ogawa H., Okumura K., Ikeda S. Cyclooxygenase inhibition in mice heightens adaptive- and innate-type responses against inhaled protease allergen and IL-33. Allergy. 2019; 74: 2237–40. DOI: https://doi.org/10.1111/all.13831

45. Froidure A., Shen C., Gras D., Van Snick J., Chanez P., Pilette C. Myeloid dendritic cells are primed in allergic asthma for thymic stromal lymphopoietin-mediated induction of Th2 and Th9 responses. Allergy. 2014; 69: 1068–76. DOI: https://doi.org/10.1111/all.12435

46. Ziegler S.F. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol. 2010; 22: 795–9. DOI: https://doi.org/10.1016/j.coi.2010.10.020

47. Kabata H., Moro K., Fukunaga K., Suzuki Y., Miyata J., Masaki K., Betsuyaku T., Koyasu S., Asano K. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013; 4: 1–10. DOI: https://doi.org/10.1038/NCOMMS3675

48. Liu S., Verma M., Michalec L., Liu W., Sripada A., Rollins D., Good J., Ito Y., Chu H., Gorska M.M., Martin R.J., Alam R. Steroid Resistance of Airway Type 2 Innate Lymphoid Cells (ILC2s) from Severe Asthma: The Role of Thymic Stromal cell Lymphopoietin (TSLP). J Allergy Clin Immunol. 2018; 141: 257. DOI: https://doi.org/10.1016/J.JACI.2017.03.032

49. Hirahara K., Mato N., Hagiwara K., Nakayama T. The pathogenicity of IL-33 on steroid-resistant eosinophilic inflammation via the activation of memory-type ST2 + CD4 + T cells. J Leukoc Biol. 2018; 104: 895–901. DOI: https://doi.org/10.1002/JLB.MR1117-456R

50. Roan F., Obata-Ninomiya K., Ziegler S.F. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest. 2019; 129: 1441–51. DOI: https://doi.org/10.1172/JCI124606

51. Petersen B.C., Budelsky A.L., Baptist A.P., Schaller M.A., Lukacs N.W. IL-25 induces type 2 cytokine production in a novel, steroid resistant IL-17RB+ myeloid population that exacerbates asthmatic pathology. Nat Med. 2012; 18: 751. DOI: https://doi.org/10.1038/NM.2735

52. An G., Wang W., Zhang X., Huang Q., Li Q., Chen S., Du X., Corrigan C.J., Huang K., Wang W., Chen Y., Yin S. Combined blockade of IL-25, IL-33 and TSLP mediates amplified inhibition of airway inflammation and remodelling in a murine model of asthma. Respirology. 2020; 25: 603–12. DOI: https://doi.org/10.1111/resp.13711

53. Verma M., Liu S., Michalec L., Sripada A., Gorska M.M., Alam R. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin–driven IL-9 + and IL-13 + type 2 innate lymphoid cell subpopulations. J Allergy Clin Immunol. 2018; 142: 793–803. DOI: https://doi.org/10.1016/j.jaci.2017.10.020

54. Gauvreau G.M., O’Byrne P.M., Boulet L.-P., Wang Y., Cockcroft D., Bigler J., FitzGerald J.M., Boedigheimer M., Davis B.E., Dias C., Gorki K.S., Smith L., Bautista E., Comeau M.R., Leigh R., Parnes J.R. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014; 370: 2102–10. DOI: https://doi.org/10.1056/NEJMoa1402895

55. Corren J., Parnes J.R., Wang L., Mo M., Roseti S.L., Griffiths J.M., van der Merwe R. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med. 2017; 377: 936–46. DOI: https://doi.org/10.1056/nejmoa1704064

56. Khaitov M.R., Shilovsky I.P. Anticytokine therapy of allergic diseases: molecular immunologic mechanisms and clinical bases. Moscow: Media Sfera Publishing House, 2021. 328 p. ISBN 978-5-89084-059-2.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»