The main approaches for monoclonal antibodies in cancer immunotherapy

Abstract

The review presents the information on the use of monoclonal antibodies (MAbs) in the treatment of cancer. The mechanisms of MAbs action, their types, methods of production and the main approaches to their use in cancer therapy are considered. Modern MAb drugs are approved for use and are used for the treatment of hematological and solid malignancies. They are targeted drags due to their effects on specific molecules involved in the mechanisms of carcinogenesis and tumor growth.

The presented data show that the synthesis and production of monoclonal antibodies, as well as their conjugation with drugs or radionuclides, have advanced significantly over the past decades. The methods of tumor immunotherapy discussed in the article have either already shown their effectiveness in the treatment of malignancies or are at various phases of clinical trials. The development of modern, more advanced technologies will help solve existing problems and make the treatment of cancer patients more effective and safer.

Keywords:monoclonal antibodies; immunotherapy; immunoconjugates; oncoimmunology

For citation: Grinko E.K., Donetskova A.D. The main approaches for monoclonal antibodies in cancer immunotherapy. Immunologiya. 2024; 45 (3): 355–66. DOI: https://doi.org/10.33029/1816-2134-2024-45-3-355-366 (in Russian)

Funding. The work of Donetskova A.D. was supported by the Strategic Academic Leadership Program of P. Lumumba RUDN of the MSHE of Russia.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. Search, collection of information, writing of the text – Grinko E.K.; editing of the article – Donetskova A.D.

References

1. Ataullakhanov R.I., Ushakova E.I., Al Khudhur S.А., Pichugin A.V., Lebedeva E.S. Reprogramming of myeloid cells of the tumor microenvironment – a new approach in the immunotherapy of malignant neoplasms. Immunologiya. 2022; 43 (4): 375–88. DOI: https://doi.org/10.33029/0206-4952-2022-43-4-375-388 (in Russian)

2. Ortho Multicenter Transplant Study Group. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants N Engl J Med. 1985; 313 (6): 337–42. DOI: https://doi.org/10.1056/nejm198508083130601

3. Kaminski M.S., Tuck M., Estes J., et al. I-131-Tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005; 352 (5): 441–9. DOI: https://doi.org/10.1056/nejmoa041511

4. WHO. International nonproprietary names (INN) for biological and biotechnological substances (a review). URL: https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-(inn)/bioreview2019.pdf. 2018

5. Balocco R., De Sousa Guimaraes Koch S., Thorpe R., Weisser K., Malan S. New INN nomenclature for monoclonal antibodies. 2022; 10319 (399): 24. DOI: https://doi.org/10.1016/S0140-6736(21)02732-X

6. WHO. New INN monoclonal antibody (mAb) nomenclature scheme. 2021. URL: https://cdn.who.int/media/docs/default-source/international-nonproprietary-names-(inn)/new_mab_-nomenclature-_2021.pdf

7. Avdeeva Zh.I., Soldatov A.A., Kiselevskiy M.V., Medunitsyn N.V. Antitumor monoclonal antibodies. Immunology. 2017; 38 (5): 256–70. DOI: https://doi.org/10.18821/0206-4952-2017-38-5-256-270 (in Russian)

8. Ryzhko V.V., Kanaeva M.L. Daratumumab for the treatment of multiple myeloma. Medical Council. 2017; 14: 94–102. DOI: https://doi.org/10.21518/2079-701X-2017-14-94-102 (in Russian)

9. Bessmeltsev S.S., Litvinskaya E.V., Abdulkadirov K.M., Karyagina E.V. Alemtuzumab in Treatment of chronic lymphocytic leukemia. Oncohematology. 2009; 3: 15–22. DOI: https://doi.org/10.17650/1818-8346-2009-0-3-15-22 (in Russian)

10. Golay J., Lazzari M., Facchinetti V., Bernasconi S., Borleri G., Barbui T., Rambaldi A., Introna M. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001; 98 (12): 3383–9. DOI: https://doi.org/10.1182/blood.v98.12.3383

11. Lokhorst H.M., Plesner T., Laubach J.P., Nahi H., Gimsing P., Hansson M., Minnema M.C., Lassen U., Krejcik J., Palumbo A., van de Donk N.W., Ahmadi T., Khan I., Uhlar C.M., Wang J., Sasser A.K., Losic N., Lisby S., Basse L., Brun N., Richardson P.G. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015; 373 (13): 1207–19. DOI: https://doi.org/10.1056/Nejmoa1506348

12. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., et al. Cancer immunoediting: from immuno- surveillance to tumor escape. Nat Immunol. 2002; 3: 991–8. DOI: https://doi.org/10.1038/ni1102-991

13. Chambers C.A., Kuhns M.S., Egen J.G., Allison J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual review of immunology. 2001; 19: 565–94. DOI: https://doi.org/10.1146/annurev.immunol.19.1.565

14. Chertkova A.I., Kadagidze Z.G., Zabotina T.N., Hulamhanova M.M., Kushlinskiy N.E. CTLA-4, CTLA-4, PD-1/PD-L1 Negative regulators of T-cell immunity in the therapy of ovarian cancer. Oncogynecology. 2019; 2: 4–15. eLIBRARY ID: 39113302 (in Russian)

15. Kadagidze Z.G., Chertkova A.I. New approaches to improve efficiency antitumor immune response. Immunology in Russia. 2015; 36 (1): 66–70. DOI: https://doi.org/10.18027/2224-5057-2015-1-24-30 (in Russian)

16.  Kushlinskii N.E., Fridman M.V., Morozov A.A., Chertkova A.I., Gershtein E.S., Kadagidze Z.G. PD-1-path: biological significance, clinical application, and existing problems. Molecular Medicine in Russia. 2019; (1): 40–2. DOI: https://doi.org/10.29296/24999490-2019-01-01 (in Russian)

17. Ben-Kasus T., Schechter B., Lavi S., Yarden Y., Sela M. Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA. 2009; 106 (9): 3294–9. DOI: https://doi.org/10.1073/pnas.0812059106

18. Jungans R.P., Sgouros G., Scheinberg D. Antibody-based immunotherapies for cancer. Cancer chemotherapy and biotherapy, 2nd edit. Ed. by Bruce Chabner and Dan Longo. Philadelphia: Lippincott Raven Publishers. 1996: 655–89.

19. Braster R., O’Toole T., van Egmond M. Myeloid cells as effector cells for monoclonal antibody therapy of cancer. Methods (San Diego, Calif.): 2014; 65 (1): 28–37. DOI: https://doi.org/10.1016/j.ymeth.2013.06.020

20. Lin T.S. Ofatumumab: a novel monoclonal anti-CD20 antibody. Pharmgenomics Pers Med. 2010; 3: 51–9. DOI: https://doi.org/10.2147/pgpm.s6840

21. Garnock-Jones K.P. Necitumumab: First Global Approval. Drugs. 2016; 76 (2): 283–9. DOI: https://doi.org/10.1007/s40265-015-0537-0

22. Effer B., Perez I., Ulloa D., Mayer C., Muñoz F., Bustos D., Rojas C., Manterola C., Vergara-Gómez L., Dappolonnio C., Weber H., Leal P. Therapeutic targets of monoclonal antibodies used in the treatment of cancer: current and emerging. Biomedicines. 2023; 11 (7): 2086. DOI: https://doi.org/10.3390/biomedicines11072086

23. Li C., Yuan Q., Deng T., Xu G., Hou J., Zheng L., Wu G. Prognosis difference between HER2-low and HER2-zero breast cancer patients: a systematic review and meta-analysis. Breast Cancer. 2023; 30 (6): 965–75. DOI: https://doi.org/10.1007/s12282-023-01487-w

24. Tobias A., O’brien M.P., Agulnik M. Olaratumab for advanced soft tissue sarcoma. Expert Rev Clin Pharmacol. 2017; 10 (7): 699–705. DOI: https://doi.org/10.1080/17512433.2017.1324295

25. Patel A., Foreman M., Tabarestani A., Sheth S., Mumtaz M., Reddy A., Sharaf R., Lucke-Wold B. Endovascular chemotherapy: selective targeting for brain cancer. international journal of medical and pharmaceutical research. 2022; 4 (1): 50–63. DOI: https://doi.org/10.5281/zenodo.7512303

26. Karabelskii A.V., Nemankin T.A., Ulitin A.B., Vaganov A.S., Mosina E.A., Ivanov R.A. Design of innovative preparations of monoclonal antibodies. Biotechnology in Russia. 2017; 1 (33): 10–29. DOI: https://doi.org/10.1016/0234-2758-2017-33-1-10-29 (in Russian)

27. Lonial S., Dimopoulos M., Palumbo A., White D., Grosicki S., Spicka I., Walter-Croneck A., Moreau P., Mateos M.V., Magen H., Belch A., Reece D., Beksac M., Spencer A., Oakervee H., Orlowski R.Z., Taniwaki M., Röllig C., Einsele H., Wu K.L., Singhal A., San-Miguel J., Matsumoto M., Katz J., Bleickardt E., Poulart V., Anderson K.C., Richardson P.; ELOQUENT-2 Investigators. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015; 373 (7): 621–31. DOI: https://doi.org/10.1056/NEJMoa1505654

28. Vasilenko E.A., Mokhonov V.V., Gorshkova E.N., Astrakhantseva I.V. Bispecific antibodies: formats and areas of application. Molekuliarnaia biologiia. 2018; 3 (52): 380–93. DOI: https://doi.org/10.7868/S0026898418030035 (in Russian)

29. Shi T., Song X., Wang Y., Liu F., Wei J. Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol. 2022; 11: 683. DOI: https://doi.org/10.3389/fimmu.2020.00683

30. Ramachandran M., Dimberg A., Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin Cancer Biol. 2017; 45: 23–35. DOI: https://doi.org/10.1016/j.semcancer.2017.02.010

31. Crupi M.J.F., Bell J.C., Singaravelu R. Concise review: targeting cancer stem cells and their supporting niche using oncolytic viruses. Stem cells. 2019; 37 (6): 716–23. DOI: https://doi.org/10.1002/stem.3004

32. Chames P., Baty D. Bispecific antibodies for cancer therapy. MAbs. 2009. 1 (6): 539–47. DOI: https://doi.org/10.4161/mabs.1.6.10015

33. Burges A., Wimberger P., Kümper C., et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin Cancer Res. 2007; 13 (13): 3899–905. DOI: https://doi.org/10.1158/1078-0432.CCR-06-2769

34. Kiewe P., Thiel E. Ertumaxomab: a trifunctional antibody for breast cancer treatment. Expert Opin Investig Drugs. 2008; 17 (10): 1553–8. DOI: https://doi.org/10.1517/13543784.17.10.1553

35. Chang H.P., Le H.K., Shah D.K. Pharmacokinetics and pharmacodynamics of antibody-drug conjugates administered via subcutaneous and intratumoral routes. Pharmaceutics. 2023; 15 (4): 1132. DOI: https://doi.org/10.3390/pharmaceutics15041132

36. Marin-Acevedo J.A., Soyano A.E., Dholaria B., Knutson K.L., Lou, Y. Cancer immunotherapy beyond immune checkpoint inhibitors. Journal of hematology & oncology. 2018; 11 (1): 8. DOI: https://doi.org/10.1186/s13045-017-0552-6

37. Kim J., Lee J.Y., Kim H.G., Kwak M. W., Kang T.H. Fc Receptor variants and disease: a crucial factor to consider in the antibody therapeutics in clinic. Int J Mol Sci. 2021; 22 (17): 9489. DOI: https://doi.org/10.3390/ijms22179489

38. Kipriyanov S.M., Cochlovius B., Schäfer H.J., Moldenhauer G., Bähre A., Le Gall F., Knackmuss S., Little M. Synergistic antitumor effect of bispecific CD19 x CD3 and CD19 x CD16 diabodies in a preclinical model of non-Hodgkin’s lymphoma. J Immunol. 2002; 169 (1): 137–44. DOI: https://doi.org/10.4049/jimmunol.169.1.137

39. Kwon N.Y., Kim Y., Lee J.O. Structural diversity and flexibility of diabodies. Methods. 2019; 154: 136–42. DOI: https://doi.org/10.1016/j.ymeth.2018.09.005

40. Park J.A., Cheung N.V. Overcoming tumor heterogeneity by ex vivo arming of T cells using multiple bispecific antibodies. J Immunother Cancer. 2022; 10 (1): e003771. DOI: https://doi.org/10.1136/jitc-2021-003771

41. Wu M.-R., Zhang T., Gacerez A.T. B7H6-specific bispecific T cell engagers (BiTEs) lead to tumor elimination and host anti-tumor immunity. J Immunol. 2015; 194 (11); 5305–11. DOI: https://doi.org/10.4049/jimmunol.1402517

42. Weidle U.H., Kontermann R.E., Brinkmann U. Tumor-antigen-binding bispecific antibodies for cancer treatment. Semin Oncol. 2014; 41 (5): 653–60. DOI: https://doi.org/10.1053/j.seminoncol.2014.08.004

43. Bargou R., Leo E., Zugmaier G., Klinger M., Goebeler M., Knop S., Noppeney R., Viardot A., Hess G., Schuler M., Einsele H., Brandl C., Wolf A., Kirchinger P., Klappers P., Schmidt M., Riethmüller G., Reinhardt C., Baeuerle P.A., Kufer P. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008; 321 (5891): 974–7. DOI: https://doi.org/10.1126/science.1158545

44. Tabernero J., Melero I., Ros W. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J Clin Oncol. 2017; 35: 3002. DOI: https://doi.org/10.1200/JCO.2017.72.8428

45. Deschler-Baier B., Chatterjee M., Goebeler M.E., Miller K., de Santis M., Loidl W., Dittrich C., Buck A., Lapa C., Thurner A., Wittemer-Rump S., Koca G., Boix O., Döcke W.D., Finnern R., Kusi H., Bargou R.C. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy. 2021; 13 (2): 125–41. DOI: https://doi.org/10.2217/imt-2020-0256

46. Papież M.A., Krzyściak W. Biological therapies in the treatment of cancer-update and new directions. Int J Mol Sci. 2021; 22 (21): 11694. DOI: https://doi.org/10.3390/ijms222111694

47. Lorenczewski G., Friedrich M., Kischel R., Dahlhoff C., Anlahr J., Balázs M., Rock D., Boyle M., Goldstein R., Coxon A., et al. Generation of a half-life extended anti-CD19 BiTE® antibody construct compatible with once-weekly dosing for treatment of CD19-positive malignancies. Blood. 2017; 130: 2815. DOI: https://doi.org/10.1182/blood.V130.Suppl_1.2815.2815

48. Avdeeva Zh.I., Soldatov A.A., Alpatova N.A., Medunitsyn N.V., Bondarev V.P., Mironov A.N., Sakaeva I.V. Preparations of next generation monoclonal antibodies (issues and prospects). Biopreparation (Biopharmaceuticals). 2015; (1): 21–35. (in Russian)

49. Srinivasan A., Mukherji S.K. Tositumomab and iodine I 131 tositumomab (Bexaar). Am J Neuroradiol. 2011; 32 (4): 637–8. DOI: https://doi.org/10.3174/ajnr.A2593

50. Cutler C.S. Economics of New Molecular Targeted Personalized Radiopharmaceuticals. Semin Nucl Med. 2019; 49 (5): 450–7. DOI: https://doi.org/10.1053/j.semnuclmed.2019.07.002

51. Jurcic J.G. Targeted Alpha-Particle Therapy for Hematologic Malignancies. J Med Imaging Radiat Sci. 2019; 50 (1): 53–7. DOI: https://doi.org/10.1016/j.jmir.2019.05.008

52. Sgouros G., Bodei L., McDevitt M.R., Nedrow J.R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020; 19 (9): 589–608. DOI: https://doi.org/10.1038/s41573-020-0073-9

53. Picozzi V.J., Ramanathan R.K., Lowery M.A. (90)Y-clivatuzumab tetraxetan with or without low-dose gemcitabine: A phase Ib study in patients with metastatic pancreatic cancer after two or more prior therapies. Eur J Cancer. 2015; 51 (14): 1857–64. DOI: https://doi.org/10.1016/j.ejca.2015.06.119

54. Gogia P., Ashraf H., Bhasin S., Xu Y. Antibody-Drug Conjugates: A review of approved drugs and their clinical level of evidence. Cancers. 2023; 15 (15): 3886. DOI: https://doi.org/10.3390/cancers15153886

55. Niegisch G. Antibody-Drug-Conjugates (ADC): A novel treatment option in urothelial carcinoma. Methods Mol Biol. 2023; 2684: 293–301. DOI: https://doi.org/10.1007/978-1-0716-3291-8_18

56. Markham A. Tisotumab Vedotin: First Approval. Drugs. 2021; 81 (18): 2141–7. DOI: https://doi.org/10.1007/s40265-021-01633-8

57. Ott P.A., Pavlick A.C., Johnson D.B. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer. 2019; 125 (7): 1113–23. DOI: https://doi.org/10.1002/cncr.31892

58. Vahdat L.T., Schmid P., Forero-Torres A. Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer («METRIC»): a randomized multicenter study. Breast Cancer. 2021; 7 (1): 57. DOI: https://doi.org/10.1038/s41523-021-00244-6

59. Palanca-Wessels M.C., Czuczman M., Salles G., Assouline S., Sehn L.H., Flinn I., Patel M.R., Sangha R., Hagenbeek A., Advani R., Tilly H., Casasnovas O., Press O.W., Yalamanchili S., Kahn R., Dere R.C., Lu D., Jones S., Jones C., Chu Y.W., Morschhauser F. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015; 16 (6): 704–15. DOI: DOI: https://doi.org/10./10.1016/S1470-2045(15)70128-2

60. Porter R.L., Matulonis U.A. Mirvetuximab soravtansine for platinum-resistant epithelial ovarian cancer. Expert Rev Anticancer Ther. 2023; 1–14. DOI: https://doi.org/10.1080/14737140.2023.2236793

61. Heo Y.A. Mirvetuximab Soravtansine: First Approval. Drugs. 2023; 83 (3): 265–73. DOI: https://doi.org/10.1007/s40265-023-01834-3

62. Bardia A., Hurvitz S.A., Tolaney S.M. Sacituzumab Govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021; 384 (16): 1529–41. DOI: https://doi.org/10.1056/nejmoa2028485

63. Sharkey R.M., Govindan S.V., Cardillo T.M. Selective and concentrated accretion of SN-38 with a CEACAM5-targeting antibody-drug conjugate (ADC), Labetuzumab Govitecan (IMMU-130). Mol Cancer Ther. 2018; 17 (1): 196–203. DOI: https://doi.org/10.1158/1535-7163.MCT-17-0442

64. Kantarjian H.M., Stock W., Cassaday R.D. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia in the INO-VATE Trial: CD22 Pharmacodynamics, Efficacy, and Safety by Baseline CD22. Clin Cancer Res. 2021; 27 (10): 2742–54. DOI: https://doi.org/10. 1158/1078-0432.CCR-20-2399

65. Pazdur R. Inotuzumab ozogamicin (Besponsa) approval letter. In: Drug approvals and Databases. U.S. Food and Drug Administration, Center for Drug Evaluation and Research. 2017.

66. Pousse L., Korfi K., Medeiros B.C. CD25 targeting with the afucosylated human IgG1 antibody RG6292 eliminates regulatory T cells and CD25+ blasts in acute myeloid leukemia. Front Oncol. 2023; 13: 1150149. DOI: https://doi.org/10.3389/fonc.2023.1150149

67. Maitland M.L., Sachdev J.C., Sharma M.R., Moreno V., Boni V., Kummar S., Stringer-Reasor E., Lakhani N., Moreau A.R., Xuan D., Li R., Powell E.L., Jackson-Fisher A., Bowers M., Alekar S., Xin X., Tolcher A.W., Calvo E. First-in-Human Study of PF-06647020 (Cofetuzumab Pelidotin), an Antibody-Drug Conjugate Targeting Protein Tyrosine Kinase 7, in Advanced Solid Tumors. Clin Cancer Res. 2021; 27 (16): 4511–20. DOI: https://doi.org/10.1158/1078-0432.CCR-20-3757

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»