References
1. Nikolskii A.A., Shilovskiy I.P., Kovchina V.I., Vishniakova L.I., Yumashev K.V., Khaitov M.R. A Model of Neutrophilic Bronchial Asthma in Mice as a Tool for Testing Personalized Drugs. 2020; 36 (4): 80–6. DOI: https://doi.org/10.21519/0234-2758-2020-36-4-80-86 (in Russian)
2. Nikolskii A.A., Shilovskiy I.P., Yumashev K.V., Vishniakova L.I., Barvinskaia E.D., Kovchina V.I., Korneev A.V., Turenko V.N., Kaganova M.M., Brylina V.E., Nikonova A.A., Kozlov I.B., Kofiadi I.A., Sergeev I.V., Maerle A.V., Petukhova O.A., Kudlay D.A., Khaitov M.R. Effect of local suppression of Stat3 gene expression in a mouse model of pulmonary neutrophilic inflammation. Immunologiya. 2021; 42 (6): 600–14. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-600-614 (in Russian)
3. Babakhin A.A., Laskin A.A., Nikonova A.A., Kamishnikov O.Y., Tsarev S.V., Shilovsky I.P., Markina A.A., Aparin P.G., Wang H., Khaitov M.R. Modelling of bronchial asthma with neutrophilic phenotype of inflammation. Immunologiya. 2017; 38 (4): 199–205. DOI: https://doi.org/10.18821/0206-4952-2017-38-4-199-205 (in Russian)
4. Soriano J.B., Abajobir A.A., Abate K.H., Abera S.F., Agrawal A., Ahmed M.B., Aichour A.N., Aichour I., Eddine Aichour M.T., Alam K., Alam N., Alkaabi J.M., Al-Maskari F., Alvis-Guzman N., Amberbir A., Amoako Y.A., Ansha M.G., Antó J.M., Asayesh H., Atey T.M., Avokpaho E.F.G.A., Barac A., Basu S., Bedi N., Bensenor I.M., Berhane A., Beyene A.S., Bhutta Z.A., Biryukov S., Boneya D.J., Brauer M., Carpenter D.O., Casey D., Christopher D.J., Dandona L., Dandona R., Dharmaratne S.D., Do H.P., Fischer F., Gebrehiwot T.T., Geleto A., Ghoshal A.G., Gillum R.F., Mohamed Ginawi I.A., Gupta V., Hay S.I., Hedayati M.T., Horita N., Hosgood H.D., Jakovljevic M.M.B., James S.L., Jonas J.B., Kasaeian A., Khader Y. S., Khalil I.A., Khan E.A., Khang Y.H., Khubchandani J., Knibbs L.D., Kosen S., Koul P.A., Kumar G.A., Leshargie C.T., Liang X., Magdy Abd El Razek H., Majeed A., Malta D.C., Manhertz T., Marquez N., Mehari A., Mensah G.A., Miller T.R., Mohammad K.A., Mohammed K.E., Mohammed S., Mokdad A.H., Naghavi M., Nguyen C.T., Nguyen G., Nguyen Q Le., Nguyen T.H., Ningrum D.N.A., Nong V.M, Obi J.I., Odeyemi Y.E., Ogbo F.A., Oren E., Mahesh P.A., Park E.K., Patton G.C., Paulson K., Qorbani M., Quansah R., Rafay A., Rahman M.H.U., Rai R.K., Rawaf S., Reinig N., Safiri S., Sarmiento-Suarez R., Sartorius B., Savic M., Sawhney M., Shigematsu M., Smith M., Tadese F., Thurston G.D., Topor-Madry R., Tran B.X., Ukwaja K.N., van Boven J.F.M., Vlassov V.V., Vollset S.E., Wan X, Werdecker A, Hanson S.W., Yano Y., Yimam H.H., Yonemoto N., Yu C., Zaidi Z., Sayed Zaki M.El., Lopez A.D., Murray C.J.L., Vos T. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017; 9 (5): 691–706. DOI: https://doi.org/10.1016/S2213-2600(17)30293-X
5. Avdeev S.N., Nenasheva N.M., Zhudenkov K.V., Petrakovskaya V.A., Izyumova G.V. Prevalence, morbidity, phenotypes and other characteristics of severe bronchial asthma in Russian Federation. Pulmonologiya. 2018; 28 (3): 341–58. DOI: https://doi.org/10.18093/0869-0189-2018-28-3-341-358 (in Russian)
6. Bush A. Pathophysiological Mechanisms of Asthma. Front Pediatr. 2019; 68 (7): 1–17. DOI: https://doi.org/10.3389/FPED.2019.00068
7. Kuruvilla M.E., Lee F.E.H., Lee G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019; 56 (2): 219–33. DOI: https://doi.org/10.1007/S12016-018-8712-1
8. Shilovskiy I.P., Kovchina V.I., Timotievich E.D., Nikolskii A.A, Khaitov M.R. The role and molecular mechanisms of alternative splicing of Th2-cytokines IL-4 and IL-5 in atopic bronchial asthma. Biochemistry (Moscow). 2023; 88 (10): 1940–56. DOI: https://doi.org/10.31857/S0320972523100159 (in Russian)
9. Klein S.C., Golverdingen J.G., Bouwens A. G.M., Tilanus M.G.J., de Weger R.A. An alternatively spliced interleukin 4 form in lymphoid cells. Immunogenetics. 1995; 41 (1): 57. DOI: https://doi.org/10.1007/BF00188440
10. Luzina I.G., Lockatell V., Lavania S., Pickering E.M., Kang P.H., Bashkatova Y.N., Andreev S.M., Atamas S.P. Natural production and functional effects of alternatively spliced interleukin-4 protein in asthma. Cytokine. 2012; 58 (1): 20–6. DOI: https://doi.org/10.1016/J.CYTO.2011.12.017
11. Shilovskiy I.P., Nikolskii A.A., Kurbacheva O.M., Khaitov M.R. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. Biochemistry (Moscow). 2020; 85 (8): 854–68. DOI: https://doi.org/10.1134/S0006297920080027 (in Russian)
12. Alms W.J., Atamas S.P., Yurovsky V.V., White B. Generation of a variant of human interleukin-4 by alternative splicing. Mol Immunol. 1996; 33 (4-5): 361–70. DOI: https://doi.org/10.1016/0161-5890(95)00154-9
13. Glare E.M., Divjak M., Rolland J.M., Walters E.H. Asthmatic airway biopsy specimens are more likely to express the IL-4 alternative splice variant IL-4delta2. J Allergy Clin Immunol. 1999; 104 (5): 978–82. DOI: https://doi.org/10.1016/S0091-6749(99)70078-3
14. Seah G.T., Gao P.S., Hopkin J.M., Rook G.A.W. Interleukin-4 and its alternatively spliced variant (IL-4delta2) in patients with atopic asthma. Am J Respir Crit Care Med. 2001; 164 (6): 1016–8. DOI: https://doi.org/10.1164/AJRCCM.164.6.2012138
15. Reichman H., Rozenberg P., Munitz A. Mouse Eosinophils: Identification, Isolation, and Functional Analysis. Curr Protoc Immunol. 2017; 119: 14.43.1–14.43.22. DOI: https://doi.org/10.1002/CPIM.35
16. Atamas S.P., Choi J., Yurovsky V.V., White B. An alternative splice variant of human IL-4, IL-4 delta 2, inhibits IL-4-stimulated T cell proliferation. J Immunol. 1996; 156 (2): 435–41. DOI: https://doi.org/10.4049/jimmunol.156.2.435