Cholinergic modulation of mast cells

Abstract

Introduction. One of the aspects of inflammation control is the nervous and immune cooperation. Due to a wide range of activation receptors and mediators inherent in both systems, as well as anatomical colocalization with nerve fibers, mast cells (MC) are key intermediaries between these integrating systems and form bi-directional neuro-mastocytic functional units. The anti-inflammatory role of the vagus has been experimentally demonstrated. Its effects are mediated by the α7-nicotinic acetylcholine receptor but the question of cholinergic regulation of MC remains unclear.

The aim of the study was to evaluate the effect of acetylcholine (ACh) on MC secretory functions.

Material and methods. The source of MCs was mouse peritoneal exudate (PMC) cells. ACh has the dose-dependent effect on spontaneous and anti-IgE-induced degranulation of PTC which was evaluated by the level of histamine and β-hexosaminidase release in 5 and 15 min after ACh administration. To inhibit the binding of ACh to its α7-nicotonic receptor α-bungarotoxin (10–6 M) was used.

Results. ACh caused degranulation of unstimulated PMCs. In 5 min after ACh adding (10–5 M) into the cell cultures the maximum secretion-stimulating effect was observed (39 % for histamine and 47 % for β-hexosaminidase). In the contrary, after adding ACh to PTCs prestimulated by anti-IgE antibodies dose-depend reduction of secretion (-20–30 %) was observed. This inhibitory effect was canceled in the presence of α-bungarotoxin which suggests the involvement of the α7-nicotinic ACh receptor in signal transduction.

Conclusion. The ACh effect on MCs depends on the initial state of the system. In the case of unstimulated mastocytes ACh promotes their degranulation and secretion of preformed mediators. On the contrary, in the framework of the immune response ACh can inhibit the MC activation to prevent their massive degranulation.

Keywords: mast cells; neuroimmune communication; mast cell-nerve functional unit, acetylcholine; histamine; cholinergic anti-inflammatory pathway

For citation: Kutukova N.A., Polevshchikov А.V. Cholinergic modulation of mast cells. Immunologiya. 2025; 46 (1): 6–15. DOI: https://doi.org/10.33029/1816-2134-2025-46-1-6-15 (in Russian)

Funding. The work was carried out in the planned topic of the IEM of the MSHE of Russia FGWG-2022-0005 (reg. No. 122020300186-5).

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Conducting experiments, analysing results, writing the article – Kutukova N.A.; text editing, approval of the final version of the article, responsibility for the integrity of all parts of the article – Polevshchikov А.V.

References

  1. Varricchi G., Rossi F.W., Galdiero M.R., Granata F., Criscuolo G., Spadaro G., De Paulis A., Marone G. Physiological roles of mast cells: collegium internationale allergologicum update 2019. Int Arch Allergy Immunol. 2019; 179 (4): 247–61. DOI: https://doi.org/10.1159/000500088
  2. Babina М., Franke K., Bal G. How «Neuronal» are human skin mast cells? Int J Mol. Sci. 2022; 23 (18): 10871. DOI: https://doi.org/10.3390/ijms231810871
  3. Pavlov V.A., Tracey K.J. Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci. 2004; 61 (18): 2322–31. DOI: https://doi.org/10.1007/s00018-004-4102-3
  4. Gamble H.J., Goldby S. Mast cells in peripheral nerve trunks. Nature. 1961; 189 (4766): 766–7. DOI: https://doi.org/10.1038/189766a0
  5. Olsson Y. Mast Cells in the nervous system. Int Rev Cytol. 1968; 24: 27–70. DOI: https://doi.org/10.1016/s0074-7696(08)61396-0
  6. Heine H., Förster F.J. Relationships between mast cells and preterminal nerve fibers. Z. Mikrosk Anat Forsch. 1975; 89 (5): 934–7. PMID: 1234396
  7. Newson B., Dahlstrom A., Enerback L., Ahlman H. Suggestive evidence for a direct innervation of mucosal mast cells. Neuroscience. 1983; 10 (2): 565–70. DOI: https://doi.org/10.1016/0306-4522(83)90153-7
  8. Bienenstock J., Tomioka M., Matsuda H., Stead R.H., Quinonez G., Simon G.T., Coughlin M.D., Denburg J.A. The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions. Int Arch Allergy Appl Immunol. 1987; 82 (3-4): 238–43. DOI: https://doi.org/10.1159/000234197
  9. Pearce F.L., Kassessinoff T.A., Liu W.L. Characteristics of histamine secretion induced by neuropeptides: implications for the relevance of peptide-mast cell interactions in allergy and inflammation. Int Arch Allergy Appl Immunol. 1989; 88 (1-2): 129–31. DOI: https://doi.org/10.1159/000234764
  10. Forsythe P., Bienenstock J. The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem Immunol Allergy. 2012; 98: 196–221. DOI: https://doi.org/10.1159/000336523
  11. Kulka M., Sheen C.H., Tancowny B.P., Grammer L.C., Schleimer R.P. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 2008; 123 (3): 398–410. DOI: https://doi.org/10.1111/j.1365-2567.2007.02705.x
  12. Stead R.H., Colley E.C., Wang B., Partosoedarso E., Lin J., Stanisz A. Vagal influences over mast cells. Auton Neurosci. 2006; 125 (1-2): 53–61. DOI: https://doi.org/10.1016/j.autneu.2006.01.002
  13. Bischoff S.C., Schwengberg S., Lorentz A., Manns M.P., Bektas H., Sann H., Levi-Schaffer F., Shanahan F., Schemann M. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol. Motil. 2004; 16 (2): 185–93. DOI: https://doi.org/10.1111/j.1365-2982.2004.00502.x
  14. Gusel’nikova V.V., Polevshchikov A.V. Thymic mast cells: at three-way crossroads. Immunologiya. 2021; 42 (4): 327–36. DOI: https://doi.org/10.33029/0206-4952-2021-42-4-327-336 (in Russian)
  15. Mirotti L., Castro J., Costa-Pinto F.A., Russo M. Neural pathways in allergic inflammation. J Allergy (Cairo). 2010; 2010: 491928. DOI: https://doi.org/10.1155/2010/491928
  16. Yamamoto T., Kodama T., Lee J., Utsunomiya N., Hayashi S., Sakamoto H., Kuramoto H., Kadowaki M. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS One. 2014; 9 (1): e85888. DOI: https://doi.org/10.1371/journal.pone.0085888
  17. Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2019; 42 (1): 43–55. DOI: https://doi.org/10.1016/j.tins.2018.09.006
  18. Toyoshima S., Okayama Y. Neuro-allergology: mast cell-nerve cross-talk. Allergol Int. 2022; 71 (3): 288–93. DOI: https://doi.org/10.1016/j.alit.2022.04.002
  19. Kleij H.P., Bienenstock J. Significance of conversation between mast cells and nerves. Allergy Asthma Clin Immunol. 2005; 1 (2): 65–80. DOI: https://doi.org/10.1186/1710-1492-1-2-65
  20. Abe N., Toyama H., Ejima Y., Saito K., Tamada T., Yamauchi M., Kazama I. α1-adrenergic receptor blockade by prazosin synergistically stabilizes rat peritoneal mast cells. Biomed Res Int. 2020; 2020: 3214186. DOI: https://doi.org/10.1155/2020/3214186
  21. Ogawa K., Nabe T., Yamamura H., Kohno S. Nanomolar concentrations of neuropeptides induce histamine release from peritoneal mast cells of a substrain of Wistar rats. Eur J Pharmacol. 1999; 374 (2): 285–91. DOI: https://doi.org/10.1016/s0014-2999(99)00338-6
  22. Tore F., Tuncel N. Mast cells: target and source of neuropeptides. Curr Pharm Des. 2009; 15 (29): 3433–45. DOI: https://doi.org/10.2174/138161209789105036
  23. Xu H., Shi X., Li X., Zou J., Zhou C., Liu W., Shao H., Chen H., Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation. 2020; 17 (1): 356. DOI: https://doi.org/10.1186/s12974-020-02029-3
  24. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405: 458–62. DOI: https://doi.org/10.1038/35013070
  25. Wang H., Yu M., Ochani M., Amella C.A., Tanovic M., Susarla S., Li J.H., Wang H., Yang H., Ulloa L., Al-Abed Y., Czura C.J., Tracey K.J. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421 (6921): 384–8. DOI: https://doi.org/10.1038/nature01339
  26. Kageyama-Yahara N., Suehiro Y., Yamamoto T., Kadowaki M. IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. Biochem Biophys Res Commun. 2008; 377 (1): 321–5. DOI: https://doi.org/10.1016/j.bbrc.2008.10.004
  27. Mishra N.C., Rir-sima-ah J., Boyd R.T., Singh S.P., Gundavarapu S., Langley R.J. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. J Immunol. 2010; 185 (1): 588–96. DOI: https://doi.org/10.4049/jimmunol.0902227
  28. Forsythe P. The parasympathetic nervous system as a regulator of mast cell function. Methods Mol Biol. 2015; 1220: 141–54. DOI: https://doi.org/10.1007/978-1-4939-1568-2_9
  29. Fantozzi R., Masini E., Blandina P., Mannaioni P.F., Bani-Sacchi T. Release of histamine from rat mast cells by acetylcholine. Nature. 1978; 273 (5662): 473–4. DOI: https://doi.org/10.1038/273473a0
  30. Masini E., Fantozzi R., Conti A., Blandina P., Brunelleschi S., Mannaioni P.F. Mast cell heterogeneity in response to cholinergic stimulation. Int Arch Allergy Appl Immunol. 1985; 77 (1-2): 184–5. DOI: https://doi.org/10.1159/000233780
  31. Radosa J., Dyck W., Goerdt S., Kurzen H. The cholinergic system in guttate psoriasis with special reference to mast cells. Exp Dermatol. 2011; 20 (8): 677–9. DOI: https://doi.org/10.1111/j.1600-0625.2011.01283.x
  32. Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol. 2013; 1032: 109–19. DOI: https://doi.org/10.1007/978-1-62703-496-8_8
  33. Shore P.A., Burkhalter A., Jr. Cohn V.H. A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959; 127: 182–6. PMID: 14446178
  34. Kuehn H.S., Radinger M., Gilfillan A.M. Measuring mast cell mediator release. Curr Protoc Immunol. 2010; 91: 1–9. DOI: https://doi.org/10.1002/0471142735.im0738s91
  35. Schwartz L.B., Austen K.F., Wasserman S.I. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979; 123 (4): 1445–50. DOI: https://doi.org/10.4049/jimmunol.123.4.1445
  36. Williams R.M., Berthoud H.R., Stead R.H. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation. 1997; 4 (5-6): 266–70. DOI: https://doi.org/10.1159/000097346
  37. Gottwald T.P., Hewlett B.R., Lhotak S., Stead R.H. Electrical stimulation of the vagus nerve modulates the histamine content of mast cells in the rat jejunal mucosa. Neuroreport. 1995; 7 (1): 313–7. PMID: 8742478
  38. Gottwald T., Lhotak S., Stead R.H. Effect of truncal vagotomy and capsaicin on mast cells and IgA-positive plasma cells in rat jejunal mucosa. Neurogastroenterol Motil. 1997; 9: 25–32. DOI: https://doi.org/10.1046/j.1365-2982.1997.d01-4.x
  39. Aidoo A.Y., Ward K. Spatio-temporal concentration of acetylcholine in vertebrate synaptic cleft. Mathematical and Computer Modelling. 2006; 44 (9-10): 952–62. DOI: https://doi.org/10.1016/j.mcm.2006.03.003
  40. Shen M., Qu Z., DesLaurier J., Welle T.M., Sweedler J.V., Chen R. Single synaptic observation of cholinergic neurotransmission on living neurons: concentration and dynamics. J Am Chem Soc. 2018; 140 (25): 7764–8. DOI: https://doi.org/10.1021/jacs.8b01989
  41. Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther. 2000; 86 (1): 29–48. DOI: https://doi.org/10.1016/S0163-7258(99)00071-6
  42. Tracey K.J. The inflammatory reflex. Nature. 2002; 420 (6917): 853–9. DOI: https://doi.org/10.1038/nature01321
  43. Bosmans G., Appeltans I., Stakenborg N., Gomez-Pinilla P.J., Florens M.V, Aguilera-Lizarraga J., Matteoli G., Boeckxstaens G.E. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy. 2019; 74 (9): 1748–59. DOI: https://doi.org/10.1111/all.13790
  44. Nazarov P.G., Pronina A.P. The influence of cholinergic agents on histamine release from HMC-1 human mast cell line stimulated with IgG, C-reactive protein and compound 48/80. Life Sci. 2012; 91 (21-22): 1053–7. DOI: https://doi.org/10.1016/j.lfs.2012.08.004
  45. Kutukova N.A., Nazarov P.G. Modulation of the functional activity of mast cells by cholinergic agents. Russian Journal of Immunology. 2018. 12 (3): 335–41. DOI: https://doi.org/10.31857/S102872210002406-1 (in Russian)
  46. Kashem S.W., Subramanian H., Collington S.J., Magotti P., Lambris J.D., Ali H. G protein coupled receptor specificity for C3a and compound 48/80-induced degranulation in human mast cells: roles of Mas-related genes MrgX1 and MrgX2. Eur J Pharmacol. 2011. 668 (1-2): 299–304. DOI: https://doi.org/10.1016/j.ejphar.2011.06.027
  47. Caslin H.L., Kiwanuka K.N., Haque T.T., Taruselli M.T., MacKnight H.P., Paranjape A., Ryan J.J. Controlling mast cell activation and homeostasis: work influenced by bill paul that continues today. Front Immunol. 2018; 9 (868): 1–16. DOI: https://doi.org/10.3389/fimmu.2018.00868
  48. Meriney S.D., Pilar G. Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci. 1987; 7 (12): 3827–39. DOI: https://doi.org/10.1523/JNEUROSCI.07-12-03827.1987
  49. Bykov V.L. Private human histology (short overview course). 2nd ed., renewed. St. Petersburg: SOTIS, 1997. 300 p. ISBN: 5-85503-116-0. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»