Determination of the phenotype and cytokine production of TCR-like CAR/CAR/TCR T cells upon contact with tumor cell spheroids in vitro

Abstract

Introduction. Over the last decade, technologies have emerged in cancer therapy that use T cells that have a genetically modified T cell receptor or have a chimeric T cell receptor that allows them to recognize various antigens. Some types of such cells have been shown to be highly effective in treating malignant neoplasms. The use of 3D-cultures to determine the mechanisms of action of such T cells provides additional insight into the action of transduced T cells when in contact with tumors in the form of 3D-cultures.

Aim of the study – determination of the phenotype and cytokine production of TCR-like CAR/CAR/TCR T cells upon contact with tumors in the form of 3D-cultures.

Material and methods. TCR-like CAR/CAR/TCR T cells were generated by transduction of healthy donor peripheral blood cells with γ-retroviral vectors. The phenotype of the transduced TCR-like CAR/CAR/TCR T cells was assessed by flow cytometry. 3D-cultures of the SK-MEL-37 melanoma tumor cell line were generated using the hanging drop method. Cytokine production in the culture of TCR-like CAR/CAR/TCR T cells and a 3D-spheroid of the SK-MEL-37 melanoma line was evaluated using multiplex analysis.

Results. Phenotype analysis showed that after transduction of TCR-like NY-ESO-1, TCR-like CAR MAGE-A4 and CAR GD2 specific T cells, dominant populations of CD4+ and CD8+ effector T cells are formed. Evaluation of cytokine production showed that in the conditioned medium from co-cultures of TCR-like CAR/CAR/TCR T cells and SK-MEL-37 3D-spheroid, a large number of antitumor cytokines are observed.

Conclusion. Transduction with γ-retroviral vectors targeting specific antigens leads to the formation of effector T cells, which, when co-cultured in 3D-cultures, produce a large number of antitumor cytokines, making the use of 3D-models promising for the development of clinical models of solid tumor therapy.

Keywords: TCR-like/CAR/TCR T-cells; SK-Mel-37; 3D-spheroid; flow cytometry; cytokines

For citation: Bulygin A.S., Philippova J.G., Alsalloum A., Alrhmoun S., Kireev F.D., Shevchenko J.A., Fisher M.S., Perik-Zavodskii R.Yu., Perik-Zavodskaia O.Yu., Nazarov K.V., Shiku H., Golikova E.A., Obleuhova I.A., Silkov A.N., Sennikov S.V. Determination of the phenotype and cytokine production of TCR-like CAR/CAR/TCR T cells upon contact with tumor cell spheroids in vitro. Immunologiya. 2025; 46 (1): 51–61. DOI: https://doi.org/10.33029/1816-2134-2025-46-1-51-61 (in Russian)

Funding. The study was supported by the grant of Russian Science Foundation No. 21-65-00004.

Conflicts of interests. Authors declare no conflict of interests.

Authors’ contributions. The concept and design of the study – Bulygin A.S., Filippova J.G., Shevchenko J.A., Shiku H. and Sennikov S.V.; collection and processing of material – Fisher M.S., Shevchenko J.A., Philippova J.G., Kireev F.D., Nazarov K.V., Obleuhova I.A., Bulygin A.S.; statistical processing – Bulygin A.S., Alrhmoun S., Perik–Zavodskii R.Yu., Perik–Zavodskaia O.Yu.; writing the text – Bulygin A.S., Filippova J.G., Kireev F.D., Alsalloum A.; editing – Sennikov S.V., Silkov A.N. Golikova E.A.

References

1. Albarrán V., San Román M., Pozas J., Chamorro J., Rosero D.I., Guerrero P., Calvo J.C., González C., García de Quevedo C., Pérez de Aguado P., Moreno J., Cortés A., Soria A. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol. 2024; 15: 1352805. DOI: https://doi.org/10.3389/fimmu.2024.1352805

2. De Marco R.C., Monzo H.J., Ojala P.M. CAR T Cell therapy: a versatile living drug. Int J Mol Sci. 2023; 24 (7): 6300. DOI: https://doi.org/10.3390/ijms24076300

3. Ershov A.V., Demyanov G.V., Nasrullaeva D.A., Radkevich E.R., Dolgikh V.T., Sidorova N.V., Valiev T.T., Efimova M.M., Machneva E.B., Kirgizov K.I., Kiselevsky M.V., Manasova Z.Sh. The latest trends in improving CAR-T cell therapy: from leukemia to solid malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021; 8 (2): 84–95. DOI: https://doi.org/10.21682/2311-1267-2021-8-2-84-95 (in Russian)

4. Zhang P., Zhang G., Wan, X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol. 2023; 16 (1): 97. DOI: https://doi.org/10.1186/s13045-023-01492-8

5. Chen Z., Han S., Sanny A., Chan D.L., van Noort D., Lim W., Tan A.H., Park S. 3D hanging spheroid plate for high-throughput CAR T cell cytotoxicity assay. J Nanobiotechnol. 2022; 20 (1): 30. DOI: https://doi.org/10.1186/s12951-021-01213-8

6. Ishiguro Y., Iriguchi S., Asano S., Shinohara T., Shiina S., Arima S., Kassai Y., Sakai Y., Obama K., Kaneko S. Lineage tracing of T cell differentiation from T-iPSC by 2D feeder-free culture and 3D organoid culture. Front Immunol. 2023; 14: 1303713. DOI: https://doi.org/10.3389/fimmu.2023.1303713

7. Alsalloum A., Alrhmoun S., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Lopatnikova J., Kurilin V., Volynets M., Akahori Y., Shiku H., Silkov A., Sennikov S. TCR-engineered lymphocytes targeting NY-ESO-1: in vitro assessment of cytotoxicity against tumors. Biomedicines. 2023; 11 (10): 2805. DOI: https://doi.org/ 10.3390/biomedicines11102805

8. Wang L., Matsumoto M., Akahori Y., Seo N., Shirakura K., Kato T., Katsumoto Y., Miyahara Y., Shiku H. Preclinical evaluation of a novel CAR-T therapy utilizing a scFv antibody highly specific to MAGE-A4p230-239/HLA-A*02:01 complex. Molecular Therapy. 2024; 32 (3): 734–48. DOI: https://doi.org/10.1016/j.ymthe.2024.01.018

9. Wang Y., Wang L., Seo N., Okumura S., Hayashi T., Akahori Y., Fujiwara H., Amaishi Y., Okamoto S., Mineno J., Tanaka Y., Kato T., Shiku H. CAR-modified Vγ9Vδ2 T Cells propagated using a novel bisphosphonate prodrug for allogeneic adoptive immunotherapy. Int J Mol Sci. 2023; 24 (13): 10873. DOI: https://doi.org/10.3390/ijms241310873

10. Hao Y., Stuart T., Kowalski M.H., Choudhary S., Hoffman P., Hartman A., Srivastava A., Molla G., Madad S., Fernandez-Granda C., Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2024; 42 (2): 293–304. DOI: https://doi.org/10.1038/s41587-023-01767-y

11. Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.R., Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019; 16 (12): 1289–96. DOI: https://doi.org/10.1038/s41592-019-0619-0

12. Sommermeyer D., Conrad H., Krönig H., Gelfort H., Bernhard H., Uckert W. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability. Int J Cancer. 2013; 132 (6): 1360–7. DOI: https://doi.org/10.1002/ijc.27792

13. Alsalloum A., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Alrhmoun S., Lopatnikova J., Vasily K., Volynets M., Zavjalov E., Solovjeva O., Akahori Y., Shiku H., Silkov A., Sennikov S. Exploring TCR-like CAR-engineered lymphocyte cytotoxicity against MAGE-A4. Int J Mol Sci. 2023; 24 (20): 15134. DOI: https://doi.org/10.3390/ijms242015134

14. Tsao C.Y., Sabbatino F., Cheung N.K., Hsu J.C., Villani V., Wang X., Ferrone S. Anti-proliferative and pro-apoptotic activity of GD2 ganglioside-specific monoclonal antibody 3F8 in human melanoma cells. Oncoimmunology. 2015; 4 (8): e1023975. DOI: https://doi.org/10.1080/2162402X.2015.1023975

15. Ware M.J., Colbert K., Keshishian V., Ho J., Corr S.J., Curley S.A., Godin B. Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique. Tissue Eng Part C Methods. 2016; 22 (4): 31–221. DOI: https://doi.org/10.1089/ten.TEC.2015.0280

16. Banerjee H., Nieves-Rosado H., Kulkarni A., Murter B., McGrath K.V., Chandran U.R., Chang A., Szymczak-Workman A.L., Vujanovic L., Delgoffe G.M., Ferris R.L., Kane L.P. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021; 36 (11): 109699. DOI: https://doi.org/10.1016/j.celrep.2021.109699

17. Sabins N.C., Chornoguz O., Leander K., Kaplan F., Carter R., Kinder M., Bachman K., Verona R., Shen S., Bhargava V., Santulli-Marotto S. TIM-3 engagement promotes effector memory T Cell differentiation of human antigen-specific CD8 T Cells by activating mTORC1. J Immunol. 2017; 199 (12): 4091–2. DOI: https://doi.org/10.4049/jimmunol.1701030

18. Kaech S.M., Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012; 12 (11): 749–61. DOI: https://doi.org/10.1038/nri3307

19. Hosokawa H., Rothenberg E.V. How transcription factors drive choice of the T cell fate. Nat Rev Immunol. 202; 21 (3): 162–76. DOI: https://doi.org/10.1038/s41577-020-00426-6

20. Mazerolles F., Rieux-Laucat F. PD-L1 is expressed on human activated naive effector CD4+ T cells. Regulation by dendritic cells and regulatory CD4+ T cells. PLoS One. 2021; 16 (11): e0260206. DOI: https://doi.org/10.1371/journal.pone.0260206

21. Lu D., Ni Z., Liu X., Feng S., Dong X., Shi X., Zhai J., Mai S., Jiang J., Wang Z., Wu H., Cai K. Beyond T Cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019; 2019: 1919082. DOI: https://doi.org/10.1155/2019/1919082

22. Philippova J.G., Kuznetsova M.S., Shevchenko J.A., Tereshchenko V.P., Fisher M.S., Kurilin V.V., Pashkina E.A., Akahori Ya., Shiku H., Sennikov S.V. Phenotype and effector functions of GD2-specific CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (5): 525–35. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-525-535 (in Russian)

23. Wachsmann T.L.A., Wouters A.K., Remst D.F.G., Hagedoorn R.S., Meeuwsen M.H., van Diest E., Leusen J., Kuball J., Falkenburg J.H.F., Heemskerk M.H.M. Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncoimmunology. 2022; 11 (1): 2033528. DOI: https://doi.org/10.1080/2162402X.2022.2033528

24. Bulygin A.S., Filippova Yu.G., Alsalloum A., Alrhmoun S., Kireev F.D., Shevchenko Yu.A., Fisher M.S., Perik-Zavodskii R.Yu., Perik-Zavodskaia O.Yu., Nazarov K.V., Shiku H., Silkov A.N., Sennikov S.V. Evaluation of TCR-like CAR/CAR/TCR T-cells metabolism in 3D-culture. Immunologiya. 2024; 45 (6): 691–700. DOI: https://doi.org/10.33029/1816-2134-2024-45-6-691-700 (in Russian)

25. Titov K.S., Chulkova S.V., Zapirov H.M., Lorie Z.V., Kiselevskiy M.V. Impact of the tumor microenvironment of breast cancer on prognosis and treatment. Russian Journal of Biotherapy. 2024; 23 (3): 10–7. DOI: https://doi.org/10.17650/1726-9784-2024-23-3-10-17 (in Russian)

26. Golubovskaya V., Wu L. Different subsets of T Cells, memory, effector functions, and CAR-T immunotherapy. Cancers 2016; 8 (3): 36. DOI: https://doi.org/10.3390/cancers8030036

27. Benmebarek M.R., Karches C.H., Cadilha B.L., Lesch S., Endres S., Kobold S. Killing mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int J Mol Sci. 2019; 20 (6): 1283. DOI: https://doi.org/10.3390/ijms20061283

28. Ivica N.A., Young C.M. Tracking the CAR-T revolution: analysis of clinical trials of CAR-T and TCR-T therapies for the treatment of cancer (1997–2020). Healthcare (Basel). 2021; 9 (8): 1062. DOI: https://doi.org/10.3390/healthcare9081062

29. Chang C.C., Jiang S.S., Tsai F.Y., Hsu P.J., Hsieh C.C., Wang L.T., Yen M.L., Yen B.L. Targeting conserved pathways in 3D spheroid formation of diverse cell types for translational application: enhanced functional and antioxidant capacity. Cells. 2023; 12 (16): 2050. DOI: https://doi.org/10.3390/cells12162050

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»