References
1. Albarrán V., San Román M., Pozas J., Chamorro J., Rosero D.I., Guerrero P., Calvo J.C., González C., García de Quevedo C., Pérez de Aguado P., Moreno J., Cortés A., Soria A. Adoptive T cell therapy for solid tumors: current landscape and future challenges. Front Immunol. 2024; 15: 1352805. DOI: https://doi.org/10.3389/fimmu.2024.1352805
2. De Marco R.C., Monzo H.J., Ojala P.M. CAR T Cell therapy: a versatile living drug. Int J Mol Sci. 2023; 24 (7): 6300. DOI: https://doi.org/10.3390/ijms24076300
3. Ershov A.V., Demyanov G.V., Nasrullaeva D.A., Radkevich E.R., Dolgikh V.T., Sidorova N.V., Valiev T.T., Efimova M.M., Machneva E.B., Kirgizov K.I., Kiselevsky M.V., Manasova Z.Sh. The latest trends in improving CAR-T cell therapy: from leukemia to solid malignant tumors. Russian Journal of Pediatric Hematology and Oncology. 2021; 8 (2): 84–95. DOI: https://doi.org/10.21682/2311-1267-2021-8-2-84-95 (in Russian)
4. Zhang P., Zhang G., Wan, X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol. 2023; 16 (1): 97. DOI: https://doi.org/10.1186/s13045-023-01492-8
5. Chen Z., Han S., Sanny A., Chan D.L., van Noort D., Lim W., Tan A.H., Park S. 3D hanging spheroid plate for high-throughput CAR T cell cytotoxicity assay. J Nanobiotechnol. 2022; 20 (1): 30. DOI: https://doi.org/10.1186/s12951-021-01213-8
6. Ishiguro Y., Iriguchi S., Asano S., Shinohara T., Shiina S., Arima S., Kassai Y., Sakai Y., Obama K., Kaneko S. Lineage tracing of T cell differentiation from T-iPSC by 2D feeder-free culture and 3D organoid culture. Front Immunol. 2023; 14: 1303713. DOI: https://doi.org/10.3389/fimmu.2023.1303713
7. Alsalloum A., Alrhmoun S., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Lopatnikova J., Kurilin V., Volynets M., Akahori Y., Shiku H., Silkov A., Sennikov S. TCR-engineered lymphocytes targeting NY-ESO-1: in vitro assessment of cytotoxicity against tumors. Biomedicines. 2023; 11 (10): 2805. DOI: https://doi.org/ 10.3390/biomedicines11102805
8. Wang L., Matsumoto M., Akahori Y., Seo N., Shirakura K., Kato T., Katsumoto Y., Miyahara Y., Shiku H. Preclinical evaluation of a novel CAR-T therapy utilizing a scFv antibody highly specific to MAGE-A4p230-239/HLA-A*02:01 complex. Molecular Therapy. 2024; 32 (3): 734–48. DOI: https://doi.org/10.1016/j.ymthe.2024.01.018
9. Wang Y., Wang L., Seo N., Okumura S., Hayashi T., Akahori Y., Fujiwara H., Amaishi Y., Okamoto S., Mineno J., Tanaka Y., Kato T., Shiku H. CAR-modified Vγ9Vδ2 T Cells propagated using a novel bisphosphonate prodrug for allogeneic adoptive immunotherapy. Int J Mol Sci. 2023; 24 (13): 10873. DOI: https://doi.org/10.3390/ijms241310873
10. Hao Y., Stuart T., Kowalski M.H., Choudhary S., Hoffman P., Hartman A., Srivastava A., Molla G., Madad S., Fernandez-Granda C., Satija R. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2024; 42 (2): 293–304. DOI: https://doi.org/10.1038/s41587-023-01767-y
11. Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.R., Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019; 16 (12): 1289–96. DOI: https://doi.org/10.1038/s41592-019-0619-0
12. Sommermeyer D., Conrad H., Krönig H., Gelfort H., Bernhard H., Uckert W. NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability. Int J Cancer. 2013; 132 (6): 1360–7. DOI: https://doi.org/10.1002/ijc.27792
13. Alsalloum A., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Alrhmoun S., Lopatnikova J., Vasily K., Volynets M., Zavjalov E., Solovjeva O., Akahori Y., Shiku H., Silkov A., Sennikov S. Exploring TCR-like CAR-engineered lymphocyte cytotoxicity against MAGE-A4. Int J Mol Sci. 2023; 24 (20): 15134. DOI: https://doi.org/10.3390/ijms242015134
14. Tsao C.Y., Sabbatino F., Cheung N.K., Hsu J.C., Villani V., Wang X., Ferrone S. Anti-proliferative and pro-apoptotic activity of GD2 ganglioside-specific monoclonal antibody 3F8 in human melanoma cells. Oncoimmunology. 2015; 4 (8): e1023975. DOI: https://doi.org/10.1080/2162402X.2015.1023975
15. Ware M.J., Colbert K., Keshishian V., Ho J., Corr S.J., Curley S.A., Godin B. Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique. Tissue Eng Part C Methods. 2016; 22 (4): 31–221. DOI: https://doi.org/10.1089/ten.TEC.2015.0280
16. Banerjee H., Nieves-Rosado H., Kulkarni A., Murter B., McGrath K.V., Chandran U.R., Chang A., Szymczak-Workman A.L., Vujanovic L., Delgoffe G.M., Ferris R.L., Kane L.P. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021; 36 (11): 109699. DOI: https://doi.org/10.1016/j.celrep.2021.109699
17. Sabins N.C., Chornoguz O., Leander K., Kaplan F., Carter R., Kinder M., Bachman K., Verona R., Shen S., Bhargava V., Santulli-Marotto S. TIM-3 engagement promotes effector memory T Cell differentiation of human antigen-specific CD8 T Cells by activating mTORC1. J Immunol. 2017; 199 (12): 4091–2. DOI: https://doi.org/10.4049/jimmunol.1701030
18. Kaech S.M., Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012; 12 (11): 749–61. DOI: https://doi.org/10.1038/nri3307
19. Hosokawa H., Rothenberg E.V. How transcription factors drive choice of the T cell fate. Nat Rev Immunol. 202; 21 (3): 162–76. DOI: https://doi.org/10.1038/s41577-020-00426-6
20. Mazerolles F., Rieux-Laucat F. PD-L1 is expressed on human activated naive effector CD4+ T cells. Regulation by dendritic cells and regulatory CD4+ T cells. PLoS One. 2021; 16 (11): e0260206. DOI: https://doi.org/10.1371/journal.pone.0260206
21. Lu D., Ni Z., Liu X., Feng S., Dong X., Shi X., Zhai J., Mai S., Jiang J., Wang Z., Wu H., Cai K. Beyond T Cells: understanding the role of PD-1/PD-L1 in tumor-associated macrophages. J Immunol Res. 2019; 2019: 1919082. DOI: https://doi.org/10.1155/2019/1919082
22. Philippova J.G., Kuznetsova M.S., Shevchenko J.A., Tereshchenko V.P., Fisher M.S., Kurilin V.V., Pashkina E.A., Akahori Ya., Shiku H., Sennikov S.V. Phenotype and effector functions of GD2-specific CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (5): 525–35. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-525-535 (in Russian)
23. Wachsmann T.L.A., Wouters A.K., Remst D.F.G., Hagedoorn R.S., Meeuwsen M.H., van Diest E., Leusen J., Kuball J., Falkenburg J.H.F., Heemskerk M.H.M. Comparing CAR and TCR engineered T cell performance as a function of tumor cell exposure. Oncoimmunology. 2022; 11 (1): 2033528. DOI: https://doi.org/10.1080/2162402X.2022.2033528
24. Bulygin A.S., Filippova Yu.G., Alsalloum A., Alrhmoun S., Kireev F.D., Shevchenko Yu.A., Fisher M.S., Perik-Zavodskii R.Yu., Perik-Zavodskaia O.Yu., Nazarov K.V., Shiku H., Silkov A.N., Sennikov S.V. Evaluation of TCR-like CAR/CAR/TCR T-cells metabolism in 3D-culture. Immunologiya. 2024; 45 (6): 691–700. DOI: https://doi.org/10.33029/1816-2134-2024-45-6-691-700 (in Russian)
25. Titov K.S., Chulkova S.V., Zapirov H.M., Lorie Z.V., Kiselevskiy M.V. Impact of the tumor microenvironment of breast cancer on prognosis and treatment. Russian Journal of Biotherapy. 2024; 23 (3): 10–7. DOI: https://doi.org/10.17650/1726-9784-2024-23-3-10-17 (in Russian)
26. Golubovskaya V., Wu L. Different subsets of T Cells, memory, effector functions, and CAR-T immunotherapy. Cancers 2016; 8 (3): 36. DOI: https://doi.org/10.3390/cancers8030036
27. Benmebarek M.R., Karches C.H., Cadilha B.L., Lesch S., Endres S., Kobold S. Killing mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int J Mol Sci. 2019; 20 (6): 1283. DOI: https://doi.org/10.3390/ijms20061283
28. Ivica N.A., Young C.M. Tracking the CAR-T revolution: analysis of clinical trials of CAR-T and TCR-T therapies for the treatment of cancer (1997–2020). Healthcare (Basel). 2021; 9 (8): 1062. DOI: https://doi.org/10.3390/healthcare9081062
29. Chang C.C., Jiang S.S., Tsai F.Y., Hsu P.J., Hsieh C.C., Wang L.T., Yen M.L., Yen B.L. Targeting conserved pathways in 3D spheroid formation of diverse cell types for translational application: enhanced functional and antioxidant capacity. Cells. 2023; 12 (16): 2050. DOI: https://doi.org/10.3390/cells12162050