Trained immunity and heterologous protection against COVID-19 in risk groups
AbstractAgonists of pattern-recognition receptors (PRR) cause stable epigenetic and metabolic alterations in innate immune cells resulting in long-lasting enhancement of responsiveness to secondary stimulation of the same or other PRRs. This altered responsiveness, termed trained immunity, may underlie non-specific protective effects of vaccines (heterologous protection). The COVID-19 pandemic offered great opportunities for testing the efficacy of trained immunity as an anti-infection defense strategy. However, despite promising preliminary data, randomized clinical trials (RCT) of BCG vaccine as a means to prevent COVID-19 in elderly people, persons with comorbidities and healthcare workers yielded mostly negative results. Lack of success of most RCT might have been caused by insufficiently intense vaccination schemes. Available laboratory data do not support a conclusion that BCG-induced heterologous protection against COVID-19 observed in some RCT is mediated by trained immunity. However, trained immunity may improve efficacy of specific anti-COVID-19 vaccines.
Keywords: innate immunity; trained immunity; BCG vaccine; COVID-19
For citation: Pashenkov M.V., Masyutina A.M. Trained immunity and heterologous protection against COVID-19 in risk groups. Immunologiya. 2025; 46 (1): 73–85. DOI: https://doi.org/10.33029/1816-2134-2025-46-1-73-85 (in Russian)
Funding. This work was supported by the state assignment from FMBA of Russia (code «Stareniye kletki-24»; code number 22.007.24.800). Open publication is allowed.
Conflict of interests. The authors declare no conflict of interests.
Authors’ contribution. Analysis of literature, writing the article – Pashenkov M.V., analysis of literature, editing the article – Masyutina A.M.
References
- Osada Y., Mitsuyama M., Une T., Matsumoto K., Otani T., Satoh M., Ogawa H., Nomoto K. Effect of L18-MDP (Ala), a synthetic derivative of muramyl dipeptide, on nonspecific resistance of mice to microbial infections. Infect Immun. 1982; 37 (1): 292–300. DOI: https://doi.org/10.1128/IAI.37.1.292-300.1982
- Coulombe F., Fiola S., Akira S., Cormier Y., Gosselin J. Muramyl dipeptide induces NOD2-dependent Ly6C (high) monocyte recruitment to the lungs and protects against influenza virus infection. PLoS One. 2012; 7 (5): e36734. DOI: https://doi.org/10.1371/journal.pone.0036734
- Janeway C.A. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989; 54 Pt 1 (1): 1–13. DOI: https://doi.org/10.1101/sqb.1989.054.01.003
- Netea M.G., Quintin J., Meer J.W.M. Van Der. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011; 9 (5): 355–61. DOI: https://doi.org/10.1016/J.CHOM.2011.04.006
- Kleinnijenhuis J., Quintin J., Preijers F., Benn C.S., Joosten L.A.B., Jacobs C., Loenhout J. Van, Xavier R.J., Aaby P., Meer J.W.M. Van Der, Crevel R. Van, Netea M.G. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014; 6 (2): 152–8. DOI: https://doi.org/10.1159/000355628
- Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A.B., Ifrim D.C., Saeed S., Jacobs C., Loenhout J. Van, Jong D. De, Hendrik S., Xavier R.J., Meer J.W.M. Van Der, Crevel R. Van, Netea M.G. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012; 109 (43): 17537–42. DOI: https://doi.org/10.1073/pnas.1202870109
- Zhang B.Z., Shuai H., Gong H.R., Hu J.C., Yan B., Yuen T.T.T., Hu Y.F., Yoon C., Wang X.L., Hou Y., Lin X., Huang X., Li R., Au-Yeung Y.M., Li W., Hu B., Chai Y., Yue M., Cai J.P., Ling G.S., Hung I.F.N., Yuen K.Y., Chan J.F.W., Huang J.D., Chu H. Bacillus Calmette-Guérin-induced trained immunity protects against SARS-CoV-2 challenge in K18-hACE2 mice. JCI insight. 2022; 7 (11): e157393. DOI: https://doi.org/10.1172/jci.insight.157393
- Wimmers F., Donato M., Kuo A., Ashuach T., Gupta S., Li C., Dvorak M., Foecke M.H., Chang S.E., Hagan T., Jong S.E. De, Maecker H.T., Most R. van der, Cheung P., Cortese M., Bosinger S.E., Davis M., Rouphael N., Subramaniam S., Yosef N., Utz P.J., Khatri P., Pulendran B. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell. 2021; 184 (15): 3915–35.e21. DOI: https://doi.org/10.1016/J.CELL.2021.05.039
- Moorlag S.J.C.F.M., Rodriguez-Rosales Y.A., Gillard J., Fanucchi S., Theunissen K., Novakovic B., Bont C.M. de, Negishi Y., Fok E.T., Kalafati L., Verginis P., Mourits V.P., Koeken V.A.C.M., Bree L.C.J. de, Pruijn G.J.M., Fenwick C., Crevel R. van, Joosten L.A.B., Joosten I., Koenen H., Mhlanga M.M., Diavatopoulos D.A., Chavakis T., Netea M.G. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 2020; 33 (7): 108387. DOI: https://doi.org/10.1016/j.celrep.2020.108387
- Dokun A.O., Kim S., Smith H.R.C., Kang H.S.P., Chu D.T., Yokoyama W.M. Specific and nonspecific NK cell activation during virus infection. Nat Immunol. 2001; 2 (10): 951–6. DOI: https://doi.org/10.1038/NI714
- Divangahi M., Aaby P., Khader S.A., Barreiro L.B., Bekkering S., Chavakis T., Crevel R. van, Curtis N., DiNardo A.R., Dominguez-Andres J., Duivenwoorden R., Fanucchi S., Fayad Z., Fuchs E., Hamon M., Jeffrey K.L., Khan N., Joosten L.A.B., Kaufmann E., Latz E., Matarese G., Meer J.W.M. van der, Mhlanga M., Moorlag S.J.C.F.M., Mulder W.J.M., Naik S., Novakovic B., O’Neill L., Ochando J., Ozato K., Riksen N.P., Sauerwein R., Sherwood E.R., Schlitzer A., Schultze J.L., Sieweke M.H., Benn C.S., Stunnenberg H., Sun J., Veerdonk F.L. van de, Weis S., Williams D.L., Xavier R., Netea M.G. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat Immunol. 2021; 22 (1): 2–6. DOI: https://doi.org/10.1038/S41590-020-00845-6
- Arts R.J.W., Moorlag S.J.C.F.M., Novakovic B., Li Y., Wang S.Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., Reusken C.B.E.M., Benn C.S., Aaby P., Koopmans M.P., Stunnenberg H.G., Crevel R. van, Netea M.G. BCG Vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018; 23 (1): 89–100.e5. DOI: https://doi.org/10.1016/j.chom.2017.12.010
- Aaby P., Samb B., Simondon F., Seck A.M.C., Knudsen K., Whittle H. Non-specific beneficial effect of measles immunisation: analysis of mortality studies from developing countries. BMJ. 1995; 311 (7003): 481. DOI: https://doi.org/10.1136/BMJ.311.7003.481
- Biering-Sørensen S., Jensen K.J., Monterio I., Ravn H., Aaby P., Benn C.S. Rapid Protective effects of early BCG on neonatal mortality among low birth weight boys: observations from randomized trials. J Infect Dis. 2018; 217 (5): 759–66. DOI: https://doi.org/10.1093/infdis/jix612
- Brooks M.N., Rajaram M.V.S., Azad A.K., Amer A.O., Valdivia-Arenas M.A., Park J.H., Núñez G., Schlesinger L.S. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol. 2011; 13 (3): 402–18. DOI: https://doi.org/10.1111/J.1462-5822.2010.01544.X
- Meyenn F. von, Schaefer M., Weighardt H., Bauer S., Kirschning C.J., Wagner H., Sparwasser T. Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guérin by Flt3-ligand generated dendritic cells. Immunobiology. 2006; 211 (6–8): 557–65. DOI: https://doi.org/10.1016/j.imbio.2006.05.004
- Kaufmann E., Khan N., Tran K.A., Ulndreaj A., Pernet E., Fontes G., Lupien A., Desmeules P., McIntosh F., Abow A., Moorlag S.J.C.F.M., Debisarun P., Mossman K., Banerjee A., Karo-Atar D., Sadeghi M., Mubareka S., Vinh D.C., King I.L., Robbins C.S., Behr M.A., Netea M.G., Joubert P., Divangahi M. BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Rep. 2022; 38 (10): 110502. DOI: https://doi.org/10.1016/j.celrep.2022.110502
- Hilligan K.L., Namasivayam S., Sher A. BCG mediated protection of the lung against experimental SARS-CoV-2 infection. Front Immunol. 2023; 14 (Sep 8): 1232764. DOI: https://doi.org/10.3389/fimmu.2023.1232764
- Théroude C., Reverte M., Heinonen T., Ciarlo E., Schrijver I.T., Antonakos N., Maillard N., Pralong F., Roy D. Le, Roger T. Trained immunity confers prolonged protection from listeriosis. Front Immunol. 2021; 12: 723393. DOI: https://doi.org/10.3389/fimmu.2021.723393
- Garly M.L., Martins C.L., Balé C., Baldé M.A., Hedegaard K.L., Gustafson P., Lisse I.M., Whittle H.C., Aaby P. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: A non-specific beneficial effect of BCG? Vaccine. 2003; 21 (21–22): 2782–90. DOI: https://doi.org/10.1016/S0264-410X(03)00181-6
- Aaby P., Roth A., Ravn H., Napirna B.M., Rodrigues A., Lisse I.M., Stensballe L., Diness B.R., Lausch K.R., Lund N., Biering-Sørensen S., Whittle H., Benn C.S. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011; 204 (2): 245–52. DOI: https://doi.org/10.1093/infdis/jir240
- Biering-Sørensen S., Aaby P., Lund N., Monteiro I., Jensen K.J., Eriksen H.B., Schaltz-Buchholzer F., Jørgensen A.S.P., Rodrigues A., Fisker A.B., Benn C.S. Early BCG-Denmark and neonatal mortality among infants weighing <2500 g: a randomized controlled trial. Clin Infect Dis. 2017; 65 (7): 1183–90. DOI: https://doi.org/10.1093/cid/cix525
- Stensballe L.G., Ravn H., Birk N.M., Kjærgaard J., Nissen T.N., Pihl G.T., Thøstesen L.M., Greisen G., Jeppesen D.L., Kofoed P.E., Pryds O., Sørup S., Aaby P., Benn C.S. BCG Vaccination at birth and rate of hospitalization for infection until 15 months of age in danish children: a randomized clinical multicenter trial. J Pediatric Infect Dis Soc. 2019; 8 (3): 213–20. DOI: https://doi.org/10.1093/jpids/piy029
- Medical Research Council. B.C.G. and Vole Bacillus Vaccines in the prevention of tuberculosis in adolescents. Br Med J. 1959; 2 (5149): 379–96. PMID: 13856755
- Ferguson R., Simes A. BCG vaccination of Indian infants in Saskatchewan. Tubercle. 1949; 30 (1): 5–11. DOI: https://doi.org/10.1016/S0041-3879(49)80055-9
- Glass C.K., Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016; 17 (1): 26–33. DOI: https://doi.org/10.1038/ni.3306
- Arts R.J.W., Carvalho A., Rocca C. La, Palma C., Rodrigues F., Silvestre R., Kleinnijenhuis J., Lachmandas E., Gonçalves L.G., Belinha A., Cunha C., Oosting M., Joosten L.A.B., Matarese G., Crevel R. van, Netea M.G. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016; 17 (10): 2562–71. DOI: https://doi.org/10.1016/j.celrep.2016.11.011
- Cheng S.C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V., Giamarellos-Bourboulis E.J., Martens J.H.A., Rao N.A., Aghajanirefah A., Manjeri G.R., Li Y., Ifrim D.C., Arts R.J.W., Meer B.M.J.W. Van Der, Deen P.M.T., Logie C., O’Neill L.A., Willems P., Veerdonk F.L. Van De, Meer J.W.M. Van Der, Ng A., Joosten L.A.B., Wijmenga C., Stunnenberg H.G., Xavier R.J., Netea M.G. MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014; 345 (6204): 1250684. DOI: https://doi.org/10.1126/science.1250684
- Будихина А.С., Пащенков М.В. Роль гликолиза в иммунном ответе. Иммунология. 2021; 42 (1): 5–20. DOI: https://doi.org/10.33029/0206-4952-2021-42-1-5-20 [Budikhina A.S., Pashenkov M.V. The role of glycolysis in immune response. Immunologiya. 2021; 42 (1): 5–20. DOI: https://doi.org/10.33029/0206-4952-2021-42-1-5-20 (in Russian)].
- Kloc M., Kubiak J.Z., Zdanowski R., Ghobrial R.M. Memory Macrophages. Int J Mol Sci. 2022; 24 (1): 38. DOI: https://doi.org/10.3390/IJMS24010038
- Kalafati L., Hatzioannou A., Hajishengallis G., Chavakis T. The role of neutrophils in trained immunity. Immunol Rev. 2023; 314 (1): 142–57. DOI: https://doi.org/10.1111/imr.13142
- Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A., Bigley V., Flavell R.A., Gilroy D.W., Asquith B., Macallan D., Yona S. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017; 214 (7): 1913. DOI: https://doi.org/10.1084/JEM.20170355
- Lahoz-Beneytez J., Elemans M., Zhang Y., Ahmed R., Salam A., Block M., Niederalt C., Asquith B., Macallan D. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016; 127 (26): 3431–8. DOI: https://doi.org/10.1182/blood-2016-03-700336
- Cirovic B., Bree L.C.J. de, Groh L., Blok B.A., Chan J., Velden W.J.F.M. van der, Bremmers M.E.J., Crevel R. van, Händler K., Picelli S., Schulte-Schrepping J., Klee K., Oosting M., Koeken V.A.C.M., Ingen J. van, Li Y., Benn C.S., Schultze J.L., Joosten L.A.B., Curtis N., Netea M.G., Schlitzer A. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe. 2020; 28 (2): 322–334.e5. DOI: https://doi.org/10.1016/j.chom.2020.05.014
- Kaufmann E., Sanz J., Dunn J.L., Khan N., Mendonça L.E., Pacis A., Tzelepis F., Pernet E., Dumaine A., Grenier J.C., Mailhot-Léonard F., Ahmed E., Belle J., Besla R., Mazer B., King I.L., Nijnik A., Robbins C.S., Barreiro L.B., Divangahi M. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell. 2018; 172 (1–2): 176–190.e19. DOI: https://doi.org/10.1016/j.cell.2017.12.031
36. Katzmarski N., Domínguez-Andrés J., Cirovic B., Renieris G., Ciarlo E., Roy D. Le, Lepikhov K., Kattler K., Gasparoni G., Händler K., Theis H., Beyer M., Meer J.W.M. van der, Joosten L.A.B., Walter J., Schultze J.L., Roger T., Giamarellos-Bourboulis E.J., Schlitzer A., Netea M.G. Transmission of trained immunity and heterologous resistance to infections across generations. Nat Immunol. 2021; 22 (11): 1382–90. DOI: https://doi.org/10.1038/S41590-021-01052-7
37. Bigot J., Guillot L., Guitard J., Ruffin M., Corvol H., Chignard M., Hennequin C., Balloy V. Respiratory epithelial cells can remember infection: a proof-of-concept study. J Infect Dis. 2020; 221 (6): 1000–5. DOI: https://doi.org/10.1093/infdis/jiz569
38. Messi M., Giacchetto I., Nagata K., Lanzavecchia A., Natoli G., Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol. 2003; 4 (1): 78–86. DOI: https://doi.org/10.1038/ni872
39. Hendricks J., Bos N.A., Kroese F.G.M. Heterogeneity of memory marginal zone B Cells. Crit Rev Immunol. 2018; 38 (2): 145–58. DOI: https://doi.org/10.1615/critrevimmunol.2018024985
40. Lopez-Vergès S., Milush J.M., Schwartz B.S., Pando M.J., Jarjoura J., York V.A., Houchins J.P., Miller S., Kang S.M., Norris P.J., Nixon D.F., Lanier L.L. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci U S A. 2011; 108 (36): 14725–32. DOI: https://doi.org/10.1073/pnas.1110900108
41. Mourits V.P., Koeken V.A.C.M., Bree L.C.J. De, Moorlag S.J.C.F.M., Chu W.C., Xu X., Dijkstra H., Lemmers H., Joosten L.A.B., Wang Y., Crevel R. Van, Netea M.G. BCG-induced trained immunity in healthy individuals: the effect of plasma muramyl dipeptide concentrations. J Immunol Res. 2020; 2020: 5812743. DOI: https://doi.org/10.1155/2020/5812743
42. Tamir H., Melamed S., Erez N., Politi B., Yahalom-Ronen Y., Achdout H., Lazar S., Gutman H., Avraham R., Weiss S., Paran N., Israely T. Induction of innate immune response by TLR3 agonist protects mice against SARS-CoV-2 Infection. Viruses. 2022; 14 (2): 189. DOI: https://doi.org/10.3390/v14020189
43. Aguilar-Rubido J.C., Pentón-Arias E., Akbar S.M.F. Innate immune stimulation should not be overlooked in post-exposure prophylaxis and early therapy for coronavirus infections. MEDICC Rev. 2022; 24 (1): 70–5. DOI: https://doi.org/10.37757/mr2022.v24.n1.5
44. Gursel M., Gursel I. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy. 2020; 75 (7): 1815–9. DOI: https://doi.org/10.1111/ALL.14345
45. Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A. 2020; 117 (30): 17720–6. DOI: https://doi.org/10.1073/pnas.2008410117/-/dcsupplemental
46. Riccò M., Gualerzi G., Ranzieri S., Luigi Bragazzi N. Stop playing with data: there is no sound evidence that Bacille Calmette-Guérin may avoid SARS-CoV-2 infection (for now). Acta Biomed. 2020; 91 (2): 207–13. DOI: https://doi.org/10.23750/abm.v91i2.9700
47. Sarinho E., Goudouris E., Solé D. BCG vaccine: Worrying proposal for COVID-19. Vaccine. 2021; 39 (3): 460–2. DOI: https://doi.org/10.1016/j.vaccine.2020.12.026
48. Kulesza J., Kulesza E., Koziński P., Karpik W., Broncel M., Fol M. BCG and SARS-CoV-2-What have we learned? Vaccines. 2022; 10 (10): 1641. DOI: https://doi.org/10.3390/vaccines10101641
49. Rivas M.N., Ebinger J.E., Wu M., Sun N., Braun J., Sobhani K., Eyk J.E. van, Cheng S., Arditi M. BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers. J Clin Invest. 2021; 131 (2): e145157. DOI: https://doi.org/10.1172/jci145157
50. Patella V., Sanduzzi A., Bruzzese D., Florio G., Brancaccio R., Fabbrocini G., Delfino G. A Survey Among Italian Physicians During COVID-19 outbreak. Could Bacillus Calmette-Guérin vaccine be effective against SARS-CoV-2? Front Pharmacol. 2021; 12: 646570. DOI: https://doi.org/10.3389/fphar.2021.646570
51. Koekenbier E.L., Fohse K., Maat J.S. van de, Oosterheert J.J., Nieuwkoop C. van, Hoogerwerf J.J., Grobusch M.P., Bosch M.A.A.J. van den, Wijgert J.H.H. van de, Netea M.G., Rosendaal F.R., Bonten M.J.M., Werkhoven C.H.H. van, Group B.-P. study. Bacillus Calmette-Guérin vaccine for prevention of COVID-19 and other respiratory tract infections in older adults with comorbidities: a randomized controlled trial. Clin Microbiol Infect. 2023; 29 (6): 781–8. DOI: https://doi.org/10.1016/j.cmi.2023.01.019
52. Moorlag S.J.C.F.M., Taks E., Doesschate T. Ten, Vaart T.W. Van Der, Janssen A.B., Müller L., Ostermann P., Dijkstra H., Lemmers H., Simonetti E., Mazur M., Schaal H., Heine R. Ter, Veerdonk F.L. Van De, Bleeker-Rovers C.P., Crevel R. Van, Oever J. Ten, Jonge M.I. De, Bonten M.J., Werkhoven C.H. Van, Netea M.G. Efficacy of BCG vaccination against respiratory tract infections in older adults during the coronavirus disease 2019 pandemic. Clin Infect Dis. 2022; 75 (1): E938–46. DOI: https://doi.org/10.1093/cid/ciac182
53. Claus J., Doesschate T. ten, Gumbs C., Werkhoven C.H. van, Vaart T.W. van der, Janssen A.B., Smits G., Binnendijk R. van, Klis F. van der, Baarle D. van, Paganelli F.L., Leavis H., Verhagen L.M., Joosten S.A., Bonten M.J.M., Netea M.G., Wijgert J.H.H.M. van de. BCG vaccination of health care workers does not reduce SARS-CoV-2 infections nor infection severity or duration: a randomized placebo-controlled trial. MBio. 2023; 14 (2): e0035623. DOI: https://doi.org/10.1128/mbio.00356-23
54. Messina N.L., Pittet L.F., McDonald E., Moore C., Barry S., Bonten M., Byrne A., Campbell J., Croda J., Croda M.G., Dalcolmo M., Almeida E Val F.F. de, Oliveira R.D. de, Santos G. Dos, Douglas M.W., Gardiner K., Gwee A., Jardim B.A., Kollmann T., Lacerda M.V., Lucas M., Lynn D.J., Manning L., Marshall H., O’Connell A., Perrett K.P., Post J.J., Prat-Aymerich C., Rocha J.L., Rodriguez-Baño J., Wadia U., Warris A., Davidson A., Curtis N., BRACE Trial Consortium Group. BCG vaccination of healthcare workers for protection against COVID-19: 12-month outcomes from an international randomised controlled trial. J Infect. 2024; 89 (4): 106245. DOI: https://doi.org/10.1016/j.jinf.2024.106245
55. Upton C.M., Wijk R.C. van, Mockeliunas L., Simonsson U.S.H., McHarry K., Hoogen G. van den, Muller C., Delft A. von, Westhuizen H.M. van der, Crevel R. van, Walzl G., Baptista P.M., Peter J., Diacon A.H. Safety and efficacy of BCG re-vaccination in relation to COVID-19 morbidity in healthcare workers: A double-blind, randomised, controlled, phase 3 trial. EClinicalMedicine. 2022; 48: 101414. DOI: https://doi.org/10.1016/j.eclinm.2022.101414
56. Santos A.P., Werneck G.L., Dalvi A.P.R., Santos C.C. dos, Tierno P.F.G.M.M., Condelo H.S., Macedo B., Medeiros Leung J.A. de, Souza Nogueira J. de, Malvão L., Galliez R., Aguiar R., Stefan R., Knackfuss S.M., Silva E.C. da, Castineiras T.M.P.P., Andrade Medronho R. de, e Silva J.R.L., Alves R.L.R., Moraes Sobrino Porto L.C. de, Rodrigues L.S., Kritski A.L., Queiroz Mello F.C. de. The effect of BCG vaccination on infection and antibody levels against SARS-CoV-2. The results of ProBCG: a multicenter randomized clinical trial in Brazil. Int J Infect Dis. 2023; 130: 8–16. DOI: https://doi.org/10.1016/j.ijid.2023.02.014
57. Pittet L.F., Messina N.L., Orsini F., Moore C.L., Abruzzo V., Barry S., Bonnici R., Bonten M., Campbell J., Croda J., Dalcolmo M., Gardiner K., Gell G., Germano S., Gomes-Silva A., Goodall C., Gwee A., Jamieson T., Jardim B., Kollmann T.R., Lacerda M.V.G., Lee K.J., Lucas M., Lynn D.J., Manning L., Marshall H.S., McDonald E., Munns C.F., Nicholson S., O’Connell A., Oliveira R.D. de, Perlen S., Perrett K.P., Prat-Aymerich C., Richmond P.C., Rodriguez-Baño J., Santos G. dos, Silva P. V. da, Teo J.W., Villanueva P., Warris A., Wood N.J., Davidson A., Curtis N. Randomized trial of BCG vaccine to protect against COVID-19 in health care workers. N Engl J Med. 2023; 388 (17): 1582–96. DOI: https://doi.org/10.1056/NEJMoa2212616
58. Faustman D.L., Lee A., Hostetter E.R., Aristarkhova A., Ng N.C., Shpilsky G.F., Tran L., Wolfe G., Takahashi H., Dias H.F., Braley J., Zheng H., Schoenfeld D.A., Kühtreiber W.M. Multiple BCG vaccinations for the prevention of COVID-19 and other infectious diseases in type 1 diabetes. Cell Reports Med. 2022; 3 (9): 100728. DOI: https://doi.org/10.1016/J.XCRM.2022.100728
59. Kühtreiber W.M., Hostetter E.R., Wolfe G.E., Vaishnaw M.S., Goldstein R., Bulczynski E.R., Hullavarad N.S., Braley J.E., Zheng H., Faustman D.L. Late in the US pandemic, multi-dose BCG vaccines protect against COVID-19 and infectious diseases. iScience. 2024; 27 (6): 109881. DOI: https://doi.org/10.1016/J.ISCI.2024.109881
60. Sinha S., Ajayababu A., Thukral H., Gupta S., Guha S.K., Basu A., Gupta G., Thakur P., Lingaiah R., Das B.K., Singh U.B., Singh R., Narang R., Bhowmik D., Wig N., Modak D.C., Bandyopadhyay B., Chakrabarty B., Kapoor A., Tewari S., Prasad N., Hashim Z., Nath A., Kumari N., Goswami R., Pandey S., Pandey R.M. Efficacy of Bacillus Calmette-Guérin (BCG) vaccination in reducing the incidence and severity of COVID-19 in high-risk population (BRIC): a Phase III, multi-centre, quadruple-blind randomised control trial. Infect Dis Ther. 2022; 11 (6): 2205–17. DOI: https://doi.org/10.1007/S40121-022-00703-Y
61. Blossey A.M., Brückner S., May M., Parzmair G.P., Sharma H., Shaligram U., Grode L., Kaufmann S.H.E., Netea M.G., Schindler C. VPM1002 as prophylaxis against severe respiratory tract infections including coronavirus disease 2019 in the elderly: a phase 3 randomized, double-blind, placebo-controlled, multicenter clinical study. Clin Infect Dis. 2023; 76 (7): 1304–10. DOI: https://doi.org/10.1093/CID/CIAC881
62. Tsilika M., Taks E., Dolianitis K., Kotsaki A., Leventogiannis K., Damoulari C., Kostoula M., Paneta M., Adamis G., Papanikolaou I., Stamatelopoulos K., Bolanou A., Katsaros K., Delavinia C., Perdios I., Pandi A., Tsiakos K., Proios N., Kalogianni E., Delis I., Skliros E., Akinosoglou K., Perdikouli A., Poulakou G., Milionis H., Athanassopoulou E., Kalpaki E., Efstratiou L., Perraki V., Papadopoulos A., Netea M.G., Giamarellos-Bourboulis E.J. ACTIVATE-2: A double-blind randomized trial of BCG vaccination against COVID-19 in individuals at risk. Front Immunol. 2022; 13: 873067. DOI: https://doi.org/10.3389/FIMMU.2022.873067
63. Doesschate T. ten, Vaart T.W. van der, Debisarun P.A., Taks E., Moorlag S.J.C.F.M., Paternotte N., Boersma W.G., Kuiper V.P., Roukens A.H.E., Rijnders B.J.A., Voss A., Veerman K.M., Kerckhoffs A.P.M., Oever J. ten, Crevel R. van, Nieuwkoop C. van, Lalmohamed A., Wijgert J.H.H.M. van de, Netea M.G., Bonten M.J.M., Werkhoven C.H. van. Bacillus Calmette-Guérin vaccine to reduce healthcare worker absenteeism in COVID-19 pandemic, a randomized controlled trial. Clin Microbiol Infect. 2022; 28 (9): 1278–85. DOI: https://doi.org/10.1016/J.CMI.2022.04.009
64. Madsen A.M.R., Schaltz-Buchholzer F., Nielsen S., Benfield T., Bjerregaard-Andersen M., Dalgaard L.S., Dam C., Ditlev S.B., Faizi G., Azizi M., Hameed Z.N., Johansen I.S., Kofoed P.E., Krause T.G., Kristensen G.S., Loekkegaard E.C.L., Mogensen C.B., Mohamed L., Oedegaard E.S., Ostenfeld A., Soerensen M.K., Wejse C., Netea M.G., Aaby P., Benn C.S. Using BCG vaccine to enhance nonspecific protection of health care workers during the COVID-19 pandemic: A Randomized controlled trial. J Infect Dis. 2024; 229 (2): 384–93. DOI: https://doi.org/10.1093/INFDIS/JIAD422
65. Anjos L.R.B. dos, Costa A.C. da, Cardoso A. da R.O., Guimarães R.A., Rodrigues R.L., Ribeiro K.M., Borges K.C.M., Carvalho A.C. de O., Dias C.I.S., Rezende A. de O., Souza C. de C., Ferreira R.R.M., Saraiva G., Barbosa L.C. de S., Vieira T. da S., Conte M.B., Rabahi M.F., Kipnis A., Junqueira-Kipnis A.P. Efficacy and safety of BCG revaccination with M. bovis BCG Moscow to prevent COVID-19 infection in health care workers: a randomized phase II clinical trial. Front Immunol. 2022; 13: 841868. DOI: https://doi.org/10.3389/FIMMU.2022.841868
66. Wen J., Liu Q., Tang D., He J.Q. Efficacy of BCG vaccination against COVID-19: systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2023; 12 (3): 1154. DOI: https://doi.org/10.3390/jcm12031154
67. Trunk G., Davidović M., Bohlius J. Non-specific effects of Bacillus Calmette-Guérin: a systematic review and meta-analysis of randomized controlled trials. Vaccines. 2023; 11 (1): 121. DOI: https://doi.org/10.3390/VACCINES11010121
68. Debisarun P.A., Gössling K.L., Bulut O., Kilic G., Zoodsma M., Liu Z., Oldenburg M., Rüchel N., Zhang B., Xu C.J., Struycken P., Koeken V.A.C.M., Domínguez-Andrés J., Moorlag S.J.C.F.M., Taks E., Ostermann P.N., Müller L., Schaal H., Adams O., Borkhardt A., Oever J. ten, Crevel R. van, Li Y., Netea M.G. Induction of trained immunity by influenza vaccination – impact on COVID-19. PLoS Pathog. 2021; 17 (10): e1009928. DOI: https://doi.org/10.1371/JOURNAL.PPAT.1009928
69. Domnich A., Orsi A., Sticchi L., Panatto D., Dini G., Ferrari A., Ogliastro M., Boccotti S., Pace V. De, Ricucci V., Bruzzone B., Durando P., Icardi G. Effect of the 2020/21 season influenza vaccine on SARS-CoV-2 infection in a cohort of Italian healthcare workers. Vaccine. 2022; 40 (12): 1755–60. DOI: https://doi.org/10.1016/J.VACCINE.2022.02.013
70. Taks E.J.M., Föhse K., J.C.F.M. Moorlag S., Hoogerwerf J., Crevel R. van, Werkhoven C.H. van, Netea M.G., Oever J. ten. Routine vaccination for influenza and pneumococcal disease and its effect on COVID-19 in a population of Dutch older adults. Vaccine X. 2023; 14: 100344. DOI: https://doi.org/10.1016/J.JVACX.2023.100344
71. Juste R.A., Vrotsou K., Mateo-Abad M., Gutiérrez-Stampa M.A., Rotaeche R., Vergara I., Bujanda L. Non-specific protection against severe COVID-19 associated to typhoid fever and DTP vaccination. Heliyon. 2024; 10 (9): e29935. DOI: https://doi.org/10.1016/J.HELIYON.2024.E29935
72. Bruxvoort K.J., Ackerson B., Sy L.S., Bhavsar A., Tseng H.F., Florea A., Luo Y., Tian Y., Solano Z., Widenmaier R., Shi M., Most R. Van Der, Schmidt J.E., Danier J., Breuer T., Qian L. Recombinant adjuvanted zoster vaccine and reduced risk of coronavirus disease 2019 diagnosis and hospitalization in older adults. J Infect Dis. 2022; 225 (11): 1915–22. DOI: https://doi.org/10.1093/INFDIS/JIAB633
73. Chen T.Y.T., Wang S.I., Hung Y.M., Hartman J.J., Chang R., Wei J.C.C. Recent human papillomavirus vaccination is associated with a lower risk of COVID-19: A US database cohort study. Drugs. 2023; 83 (7): 621–32. DOI: https://doi.org/10.1007/S40265-023-01867-8
74. Murphy D.M., Cox D.J., Connolly S.A., Breen E.P., Brugman A.A.I., Phelan J.J., Keane J., Basdeo S.A. Trained immunity is induced in humans after immunization with an adenoviral vector COVID-19 vaccine. J Clin Invest. 2023; 133 (2): e162581. DOI: https://doi.org/10.1172/JCI162581
75. Stevens N.E., Ryan F.J., Messina N.L., Blake S.J., Norton T.S., Germano S., James J., Eden G.L., Tee Y.C., Lynn M.A., Botten R., Barry S.E., Curtis N., Lynn D.J. No evidence of durable trained immunity after two doses of adenovirus-vectored or mRNA COVID-19 vaccines. J Clin Invest. 2023; 133 (17): e171742. DOI: https://doi.org/10.1172/JCI171742
76. Chinnaswamy S. SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol. 2021; 33 (6): e23504. DOI: https://doi.org/10.1002/AJHB.23504
77. Inoue K., Kashima S. Association of the past epidemic of Mycobacterium tuberculosis with mortality and incidence of COVID- 19. PLoS One. 2021; 16 (6): e0253169. DOI: https://doi.org/10.1371/JOURNAL.PONE.0253169
78. Rakshit S., Adiga V., Ahmed A., Parthiban C., Chetan Kumar N., Dwarkanath P., Shivalingaiah S., Rao S., D’Souza G., Dias M., Maguire T.J.A., Doores K.J., Zoodsma M., Geckin B., Dasgupta P., Babji S., Meijgaarden K.E. van, Joosten S.A., Ottenhoff T.H.M., Li Y., Netea M.G., Stuart K.D., Rosa S.C. De, McElrath M.J., Vyakarnam A. Evidence for the heterologous benefits of prior BCG vaccination on COVISHIELDTM vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Front Immunol. 2022; 13: 985938. DOI: https://doi.org/10.3389/FIMMU.2022.985938
79. Counoupas C., Johansen M.D., Stella A.O., Nguyen D.H., Ferguson A.L., Aggarwal A., Bhattacharyya N.D., Grey A., Hutchings O., Patel K., Siddiquee R., Stewart E.L., Feng C.G., Hansbro N.G., Palendira U., Steain M.C., Saunders B.M., Low J.K.K., Mackay J.P., Kelleher A.D., Britton W.J., Turville S.G., Hansbro P.M., Triccas J.A. A single dose, BCG-adjuvanted COVID-19 vaccine provides sterilising immunity against SARS-CoV-2 infection. NPJ vaccines. 2021; 6 (1): 143. DOI: https://doi.org/10.1038/S41541-021-00406-4
80. Logunov D.Y., Dolzhikova I. V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O. V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D. V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S. V., Naroditsky B.S., Gintsburg A.L. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England). 2021; 397 (10275): 671–81. DOI: https://doi.org/10.1016/S0140-6736(21)00234-8
81. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C., Bailey R., Swanson K.A., Roychoudhury S., Koury K., Li P., Kalina W. V., Cooper D., Frenck R.W., Hammitt L.L., Türeci Ö., Nell H., Schaefer A., Ünal S., Tresnan D.B., Mather S., Dormitzer P.R., Şahin U., Jansen K.U., Gruber W.C. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020; 383 (27): 2603–15. DOI: https://doi.org/10.1056/NEJMOA2034577
82. Lau J.J., Cheng S.M.S., Leung K., Lee C.K., Hachim A., Tsang L.C.H., Yam K.W.H., Chaothai S., Kwan K.K.H., Chai Z.Y.H., Lo T.H.K., Mori M., Wu C., Valkenburg S.A., Amarasinghe G.K., Lau E.H.Y., Hui D.S.C., Leung G.M., Peiris M., Wu J.T. Real-world COVID-19 vaccine effectiveness against the Omicron BA.2 variant in a SARS-CoV-2 infection-naive population. Nat Med. 2023; 29 (2): 348. DOI: https://doi.org/10.1038/S41591-023-02219-5
83. Andrews N., Stowe J., Kirsebom F., Toffa S., Rickeard T., Gallagher E., Gower C., Kall M., Groves N., O’Connell A.-M., Simons D., Blomquist P.B., Zaidi A., Nash S., Iwani Binti Abdul Aziz N., Thelwall S., Dabrera G., Myers R., Amirthalingam G., Gharbia S., Barrett J.C., Elson R., Ladhani S.N., Ferguson N., Zambon M., Campbell C.N.J., Brown K., Hopkins S., Chand M., Ramsay M., Lopez Bernal J. COVID-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N Engl J Med. 2022; 386 (16): 1532–46. DOI: https://doi.org/10.1056/NEJMOA2119451
84. Krause P., Fleming T.R., Longini I., Henao-Restrepo A.M., Peto R., Dean N.E., Halloran M.E., Huang Y., Fleming T.R., Gilbert P.B., DeGruttola V., Janes H.E., Krause P.R., Longini I.M., Nason M.C., Smith P.G., Riveros A.X., Gsell P.S., Henao-Restrepo A.M. COVID- 19 vaccine trials should seek worthwhile efficacy. Lancet (London, England). 2020; 396 (10253): 741. DOI: https://doi.org/10.1016/S0140-6736(20)31821-3
85. Franceschi C., Salvioli S., Garagnani P., Eguileor M. de, Monti D., Capri M. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol. 2017; 8: 982. DOI: https://doi.org/10.3389/FIMMU.2017.00982
86. Bhargavi G., Subbian S. The causes and consequences of trained immunity in myeloid cells. Front Immunol. 2024; 15: 1365127. DOI: https://doi.org/10.3389/FIMMU.2024.1365127
87. Kong L., Moorlag S.J.C.F.M., Lefkovith A., Li B., Matzaraki V., Emst L. van, Kang H.A., Latorre I., Jaeger M., Joosten L.A.B., Netea M.G., Xavier R.J. Single-cell transcriptomic profiles reveal changes associated with BCG-induced trained immunity and protective effects in circulating monocytes. Cell Rep. 2021; 37 (7): 110028. DOI: https://doi.org/10.1016/J.CELREP.2021.110028
88. Sharma A. Epidemiological transcriptomic data supports BCG protection in viral diseases including COVID-19. Gene. 2021; 783: 145574. DOI: https://doi.org/10.1016/J.GENE.2021.145574
89. Antunes M. da S.M., Sugiyama F.H.C., Gravina H.D., Castro R.C., Mercado F.J.R., Lima J.O. de, Fontanari C., Frantz F.G. COVID-19 inactivated and non-replicating viral vector vaccines induce regulatory training phenotype in human monocytes under epigenetic control. Front Cell Infect Microbiol. 2023; 13: 1200789. DOI: https://doi.org/10.3389/FCIMB.2023.1200789
90. Hilligan K.L., Namasivayam S., Clancy C.S., O’Mard D., Oland S.D., Robertson S.J., Baker P.J., Castro E., Garza N.L., Lafont B.A.P., Johnson R., Ronchese F., Mayer-Barber K.D., Best S.M., Sher A. Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. J Exp Med. 2022; 219 (2): e20211862. DOI: https://doi.org/10.1084/JEM.20211862
91. Mejia O.R., Gloag E.S., Li J., Ruane-Foster M., Claeys T.A., Farkas D., Wang S.H., Farkas L., Xin G., Robinson R.T. Mice infected with Mycobacterium tuberculosis are resistant to acute disease caused by secondary infection with SARS-CoV-2. PLoS Pathog. 2022; 18 (3): e1010093. DOI: https://doi.org/10.1371/JOURNAL.PPAT.1010093
92. Tomita Y., Sato R., Ikeda T., Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine. 2020; 38 (41): 6352–6. DOI: https://doi.org/10.1016/J.VACCINE.2020.08.045
93. Finotti P. Sequence similarity of HSP65 of Mycobacterium bovis BCG with SARS-CoV-2 spike and nuclear proteins: may it predict an antigen-dependent immune protection of BCG against COVID-19? Cell Stress Chaperones. 2022; 27 (1): 37–43. DOI: https://doi.org/10.1007/S12192-021-01244-Y
94. Iqbal N.T., Ahmed K., Sattar T., Aziz F., Hussain R. BCG activation of trained immunity is associated with induction of cross reactive COVID- 19 antibodies in a BCG vaccinated population. PLoS One. 2024; 19 (5): e0302722. DOI: https://doi.org/10.1371/JOURNAL.PONE.0302722
95. Rahali N., Bahloul C. Induction of cross-reacting antibodies against the COVID-19 by BCG vaccination in the mouse model. Curr Microbiol. 2022; 79 (9): 275. DOI: https://doi.org/10.1007/S00284-022-02971-W
96. Kandeil A., Gomaa M.R., Taweel A. El, Mostafa A., Shehata M., Kayed A.E., Kutkat O., Moatasim Y., Mahmoud S.H., Kamel M.N., Abo Shama N.M., Sayes M. El, El-Shesheny R., Yassien M.A., Webby R.J., Kayali G., Ali M.A. Common childhood vaccines do not elicit a cross-reactive antibody response against SARS-CoV-2. PLoS One. 2020; 15 (10): e0241471. DOI: https://doi.org/10.1371/JOURNAL.PONE.0241471
97. Bernasconi N.L., Traggiai E., Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002; 298 (5601): 2199–202. DOI: https://doi.org/10.1126/SCIENCE.1076071