References
1. Russian Society of Dermatovenerologists and Cosmetologists; Russian Association of Allergists and Clinical Immunologists; Union of Pediatricians of Russia. Atopic Dermatitis: Clinical Guidelines. 2023. URL: https://raaci.ru/education/clinic_recomendations/100.html (in Russian)
2. Sacotte R., Silverberg J.I. Epidemiology of adult atopic dermatitis. Clin Dermatol. 2018; 36 (5): 595–605. DOI: https://doi.org/10.1016/j.clindermatol.2018.05.007
3. Bonamonte D., Filoni A., Vestita M., Romita P., Foti C., Angelini G. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis. Biomed Res Int. 2019; 2019 (Apr): 1–11. DOI: https://doi.org/10.1155/2019/2450605
4. Ravn N.H., Halling A.S., Berkowitz A.G., Rinnov M.R., Silverberg J.I., Egeberg A., Thyssen J.P. How does parental history of atopic disease predict the risk of atopic dermatitis in a child? A systematic review and meta-analysis. J Allergy Clin Immunol. 2020; 145 (4): 1182–93. DOI: https://doi.org/10.1016/j.jaci.2019.12.899
5. Palmer C.N.A., Irvine A.D., Terron-Kwiatkowski A., Zhao Y., Liao H., Lee S.P., Goudie D.R., Sandilands A., Campbell L.E., Smith F.J.D., O’Regan G.M., Watson R.M., Cecil J.E., Bale S.J., Compton J.G., DiGiovanna J.J., Fleckman P., Lewis-Jones S., Arseculeratne G., Sergeant A., Munro C.S., Houate B. El, McElreavey K., Halkjaer L.B., Bisgaard H., Mukhopadhyay S., McLean W.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006; 38 (4): 441–6. DOI: https://doi.org/10.1038/ng1767
6. Fujii M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells. 2021; 10 (9): 2386. DOI: https://doi.org/10.3390/cells10092386
7. Nardo A. Di, Wertz P., Giannetti A., Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol. 1998; 78 (1): 27–30. DOI: https://doi.org/10.1080/00015559850135788
8. Gascan H., Gauchat J.F., Roncarolo M.G., Yssel H., Spits H., Vries J.E. De. Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J Exp Med. 1991; 173 (3): 747–50. DOI: https://doi.org/10.1084/JEM.173.3.747
9. Masyutina A.M., Pashenkov M. V., Pinegin B. V. Cellular senescence: mechanisms and clinical implications. Immunologiya. 2024; 45 (2): 221–34. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-221-234 (in Rissian)
10. Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.-M.M., Vijg J., Steeg H. Van, Dollé M.E.T., Hoeijmakers J.H.J., Bruin A. de, Hara E., Campisi J., VanSteeg H., Dollé M.E.T., Hoeijmakers J.H.J., deBruin A., Hara E., Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014; 31 (6): 722–33. DOI: https://doi.org/10.1016/j.devcel.2014.11.012
11. Tripathi U., Nchioua R., Prata L.G.P.L., Zhu Y., Gerdes E.O.W., Giorgadze N., Pirtskhalava T., Parker E., Xue A., Espindola-Netto J.M., Stenger S., Robbins P.D., Niedernhofer L.J., Dickinson S.L., Allison D.B., Kirchhoff F., Sparrer K.M.J., Tchkonia T., Kirkland J.L. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY). 2021; 13 (18): 21838–54. DOI: https://doi.org/10.18632/aging.203560
12. Lee S., Yu Y., Trimpert J., Benthani F., Mairhofer M., Richter-Pechanska P., Wyler E., Belenki D., Kaltenbrunner S., Pammer M., Kausche L., Firsching T., Dietert K., Schotsaert M., Martínez-Romero C., Singh G., Kunz S., Niemeyer D., Ghanem R., Salzer H. F.D., Lee S., Yu Y., Trimpert J., Benthani F., Mairhofer M., Richter-Pechanska P., Wyler E., Belenki D., Kaltenbrunner S., Pammer M., Kausche L., Firsching T.C., Dietert K., Schotsaert M., Martínez-Romero C., Singh G., Kunz S., Niemeyer D., Ghanem R., Salzer H.J.F., Paar C., Mülleder M., Uccellini M., Michaelis E.G., Khan A., Lau A., Schönlein M., Habringer A., Tomasits J., Adler J.M., Kimeswenger S., Gruber A.D., Hoetzenecker W., Steinkellner H., Purfürst B., Motz R., Pierro F. Di, Lamprecht B., Osterrieder N., Landthaler M., Drosten C., García-Sastre A., Langer R., Ralser M., Eils R., Reimann M., Fan D.N.Y., Schmitt C.A. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature. 2021; 599 (7884): 283–9. DOI: https://doi.org/10.1038/s41586-021-03995-1
13. Wandrer F., Han B., Liebig S., Schlue J., Manns M.P., Schulze-Osthoff K., Bantel H. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2018; 48 (3): 270–80. DOI: https://doi.org/10.1111/apt.14802
14. Tachtatzis P.M., Marshall A., Aravinthan A., Verma S., Penrhyn-Lowe S., Mela M., Scarpini C., Davies S.E., Coleman N., Alexander G.J.M. Chronic hepatitis B virus infection: The relation between hepatitis B antigen expression, telomere length, senescence, inflammation and fibrosis. PLoS One. 2015; 10 (5): 1–17. DOI: https://doi.org/10.1371/journal.pone.0127511
15. Effros R.B., Allsopp R., Chiu C., Hausner M.A., Hirji K., Wang L., Harley C.B., Villeponteau B., West M.D., Giorgi J. V. Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS. 1996; 10 (8): F17–22. DOI: https://doi.org/10.1097/00002030-199607000-00001
16. Wikby A. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002; 37 (2–3): 445–53. DOI: https://doi.org/10.1016/S0531-5565(01)00212-1
17. Faust H.J., Zhang H., Han J., Wolf M.T., Jeon O.H., Sadtler K., Peña A.N., Chung L., Maestas D.R., Tam A.J., Pardoll D.M., Campisi J., Housseau F., Zhou D., Bingham C.O., Elisseeff J.H. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest. 2020; 130 (10): 5493–507. DOI: https://doi.org/10.1172/JCI134091
18. Acosta J.C., O’Loghlen A., Banito A., Guijarro M. V., Augert A., Raguz S., Fumagalli M., Costa M. Da, Brown C., Popov N., Takatsu Y., Melamed J., d’Adda di Fagagna F., Bernard D., Hernando E., Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008; 133 (6): 1006–18. DOI: https://doi.org/10.1016/j.cell.2008.03.038
19. Acosta J., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J., Athineos D., Kang T., Lasitschka F., Andrulis M., Pascual G., Morris K., Khan S., Jin H., Dharmalingam G., Snijders A., Carroll T., Capper D., Pritchard C., Inman G., Longerich T. G.J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013; 15 (8): 978–90. DOI: https://doi.org/10.1038/ncb2784
20. Martínez-Zamudio R.I., Dewald H.K., Vasilopoulos T., Gittens-Williams L., Fitzgerald-Bocarsly P., Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021; 20 (5): e13344. DOI: https://doi.org/10.1111/acel.13344
21. Adewoye A.B., Tampakis D., Follenzi A., Stolzing A. Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology. 2020; 21 (6): 773–86. DOI: https://doi.org/10.1007/s10522-020-09893-9
22. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., Peacocke M., Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995; 92 (20): 9363–7. DOI: https://doi.org/10.1073/pnas.92.20.9363
23. Mauvezin C., Neufeld T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015; 11 (8): 1437–8. DOI: https://doi.org/10.1080/15548627.2015.1066957
24. Herbstein F., Sapochnik M., Attorresi A., Pollak C., Senin S., Gonilski-Pacin D., Ciancio del Giudice N., Fiz M., Elguero B., Fuertes M., Müller L., Theodoropoulou M., Pontel L.B., Arzt E. The SASP factor IL-6 sustains cell- autonomous senescent cells via a cGAS-STING- NFκB intracrine senescent noncanonical pathway. Aging Cell. 2024; 23 (10): 1–16. DOI: https://doi.org/10.1111/acel.14258
25. Salech F., SanMartín C.D., Concha-Cerda J., Romero-Hernández E., Ponce D.P., Liabeuf G., Rogers N.K., Murgas P., Bruna B., More J., Behrens M.I. Senescence markers in peripheral blood mononuclear cells in amnestic mild cognitive impairment and Alzheimer’s disease. Int J Mol Sci. 2022; 23 (16): 9387. DOI: https://doi.org/10.3390/ijms23169387
26. Khosla S., Farr J.N., Monroe D.G. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest. 2022; 132 (3): e154888. DOI: https://doi.org/10.1172/JCI154888
27. Mercurio L., Bailey J., Glick A.B., Dellambra E., Scarponi C., Pallotta S., Albanesi C., Madonna S. RAS-activated PI3K/AKT signaling sustains cellular senescence via P53/P21 axis in experimental models of psoriasis. J Dermatol Sci. 2024; 115 (1): 21–32. DOI: https://doi.org/10.1016/j.jdermsci.2024.03.002
28. Zhu H., Jiang J., Yang M., Zhao M., He Z., Tang C., Song C., Zhao M., Akbar A.N., Reddy V., Pan W., Li S., Tan Y., Wu H., Lu Q. Topical application of a BCL-2 inhibitor ameliorates imiquimod-induced psoriasiform dermatitis by eliminating senescent cells. J Dermatol Sci. 2024; 115 (2): 54–63. DOI: https://doi.org/10.1016/j.jdermsci.2024.06.002
29. Aghali A., Khalfaoui L., Lagnado A.B., Drake L.Y., Teske J.J., Pabelick C.M., Passos J.F., Prakash Y.S. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma. Am J Physiol Cell Mol Physiol. 2022; 323 (5): L558–68. DOI: https://doi.org/10.1152/ajplung.00146.2022
30. Lee E.Y., Lin J., Noth E.M., Hammond S.K., Nadeau K.C., Eisen E.A., Balmes J.R. Traffic-related air pollution and telomere length in children and adolescents living in Fresno, CA. J Occup Environ Med. 2017; 59 (5): 446–52. DOI: https://doi.org/10.1097/JOM.0000000000000996
31. Liu Y., Sanoff H.K., Cho H., Burd C.E., Torrice C., Ibrahim J.G., Thomas N.E., Sharpless N.E. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009; 8 (4): 439–48. DOI: https://doi.org/10.1111/j.1474-9726.2009.00489.x
32. Lemster B.H., Michel J.J., Montag D.T., Paat J.J., Studenski S.A., Newman A.B., Vallejo A.N. Induction of CD56 and TCR-independent activation of T cells with aging. J Immunol. 2008; 180 (3): 1979–90. DOI: https://doi.org/10.4049/jimmunol.180.3.1979
33. Pawelec G., Sansom D., Rehbein A., Adibzadeh M., Beckman I. Decreased proliferative capacity and increased susceptibility to activation-induced cell death in late-passage human CD4+ TCR2+ cultured T cell clones. Exp Gerontol. 1996; 31 (6): 655–68. DOI: https://doi.org/10.1016/S0531-5565(96)00097-6
34. Broadley I., Pera A., Morrow G., Davies K.A., Kern F. Expansions of cytotoxic CD4+CD28- T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection. Front Immunol. 2017; 8 (MAR): 1–10. DOI: https://doi.org/10.3389/fimmu.2017.00195