To the content
2 . 2025

Effect of endometrial macrophages on collagen production by leiomyocytes in vitro

Abstract

Introduction. The tissue fibrosis is an element not only of reparation but also of many pathologic states in particular of uterine leiomyoma, in view of what one of the most actual vectors of investigation is the clarification of the mechanisms of regulation by macrophages of the fibrotic process.

The aim of the study was to assess the influence of endometrial macrophages upon collagen synthesis and production in the primary cultures of autologous leiomyocytes.

Material and methods. 25 women of reproductive age with symptomatic intramural uterine leiomyoma participated in the study. Collagen concentration in the supernatants of 24 and 72 hour myofibroblast cultures, cocultured with autologous endometrial macrophages was assessed by ELISA method. Col 1A1 mRNA expression was assessed by real time RT-PCR.

Results. Collagen production by myofibroblasts from myomatous nodes in 24 and 72 hour culture supernatants decreased under the influence of autologous endometrial macrophages. Though the increase of collagen production and synthesis on the third day of incubation under the influence of macrophages allow suggesting, that the effect of suppression had transitional character and is directly connected with the regulation of activity by macrophages.

Conclusion. Endometrial macrophages are able to suppress collagen I type synthesis and production by myofibroblasts from myomatous nodes.

Keywords: uterine leiomyoma; macrophages; myofibroblasts; collagen

For citation: Sotnikova N.Yu., Malyshkina A.I., Voronin D.N. Effect of endometrial macrophages on collagen production by leiomyocytes in vitro. Immunologiya. 2025; 46 (2): 194–200. DOI: https://doi.org/10.33029/1816-2134-2025-46-2-194-200 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Sotnikova N.Yu.; collection and processing of material – Voronin D.N.; statistical processing – Voronin D.N.; writing the text – Sotnikova N.Yu., Malyshkina A.I., Voronin D.N.; editing – Sotnikova N.Yu., Malyshkina A.I., Voronin D.N.; approval of the final version of the article – Sotnikova N.Yu., Malyshkina A.I., Voronin D.N.; responsibility for the integrity of all parts of the article – Sotnikova N. Yu., Malyshkina A.I., Voronin D.N.

References

1. Henderson N.C., Rieder F., Wynn T.A. Fibrosis: from mechanisms to medicines. Nature. 2020; 587 (7835): 555–66. DOI: https://doi.org/10.1038/s41586-020-2938-9

2. Fabre T., Barron A.M.S., Christensen S.M., Asano S., Wadsworth II M.H., Chen X., Wang J., McMahon J., Schlerman F., White A., Kravarik K., Fisher A.J., Borthwick L.A., Hart K.M., Henderson N.C., Wynn T.A., Dower K. identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation in human and murine liver and lung fibrosis. BioRxiv. 2022; 498017. DOI: https://doi.org/10.1101/2022.07.01.498017

3. Belloni A., Furlani M., Greco S., Notarstefano V., Pro C., Randazzo B., Pellegrino P., Zannotti A., Carpini G.D., Ciavattini A., Di Lillo F., Giorgini E., Giuliani A., Cinti S., Ciarmela P. Uterine leiomyoma as useful model to unveil morphometric and macromolecular collagen state and impairment in fibrotic diseases: An ex-vivo human study. Biochim Biophys Acta Mol Basis Dis. 2022; 1868 (12): 166494. DOI: https://doi.org/10.1016/j.bbadis.2022.166494

4. Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014; 35 (4): 2871–82. DOI: https://doi.org/10.1007/s13277-013-1511-7

5. Gupta A.A., Kheur S., Palaskar S.J., Narang B.R. Deciphering the «Collagen code» in tumor progression. J Cancer Res Ther. 2021; 17 (1): 29–32. DOI: https://doi.org/10.4103/jcrt.JCRT_489_17

6. Vannella K.M., Wynn T.A. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017; 79: 593–617. DOI: https://doi.org/10.1146/annurev-physiol-022516-034356

7. Maksimova A.A., Shevela E.Ya., Chernykh E.R. Role of macrophages in the pathogenesis of pulmonary fibrosis. Immunologiya. 2024; 45 (2): 235–44. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-235-244 (in Russian)

8. Maksimova A.A., Sakhno L.V., Ostanin A.A. Fibrogenic and fibrolytic potential of differently activated human macrophages. Medical Immunology (Russia). 2023; 25 (3): 453–8. DOI: https://doi.org/10.15789/1563-0625-FAF-2713 (in Russian)

9. Wang Y., Geng X., Guo Z., Chu D., Liu R., Cheng B., Cui H., Li C., Li J., Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med. 2024; 56 (1): 2313680. DOI: https://doi.org/10.1080/07853890.2024.2313680

10. Song J., Ke B., Fang X. APC and ZBTB2 may mediate M2 macrophage infiltration to promote the development of renal fibrosis: a bioinformatics analysis. Biomed Res Int. 2024; 2024: 5674711. DOI: https://doi.org/10.1155/2024/5674711

11. Santacroce G., Di Sabatino A. UnTWISTing intestinal fibrosis: single-cell transcriptomics deciphers fibroblast heterogeneity, uncovers molecular pathways, and identifies therapeutic targets. J Clin Invest. 2024; 134 (18): e184112. DOI: https://doi.org/10.1172/JCI184112

12. Efremova N.A., Greshnyakova V.A., Goryacheva L.G. Modern concepts on pathogenetic mechanisms of liver fibrosis. Journal Infecto­logy. 2023; 15 (1): 16–24. DOI: https://doi.org/10.22625/2072-6732-2023-15-1-16-24 (in Russian)

13. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116 (16): e74–80. DOI: https://doi.org/10.1182/blood-2010-02-258558

14. Iwahashi M., Muragaki Y., Ikoma M., Mabuchi Y., Kobayashi A., Tanizaki Y., Ino K. Immunohistochemical analysis of collagen expression in uterine leiomyomata during the menstrual cycle. Exp Ther Med. 2011; 2 (2): 287–90. DOI: https://doi.org/10.3892/etm.2011.186

15. Zhang Y.Z., Wu Y., Li M.J., Mijiti A., Cheng L.F. Identification of macrophage driver genes in fibrosis caused by different heart diseases based on omics integration. J Transl Med. 2024; 22 (1): 839. DOI: https://doi.org/10.1186/s12967-024-05624-7

16. Namakanova O.A., Gubernatorova E.O., Chicherina N.R., Zvartsev R.V., Drutskaya M.S. Experimental mouse model of pulmonary fibrosis induced by nebulized LPS administration. Russian Journal of Immunology. 2024; 27 (2): 145–50. DOI: https://doi.org/10.46235/1028-7221-16876-EMM (in Russian)

17. Zhou Y., Li Z., Yu S., Wang X., Xie T., Zhang W. Iguratimod prevents renal fibrosis in unilateral ureteral obstruction model mice by suppressing M2 macrophage infiltration and macrophage-myofibroblast transition. Ren Fail. 2024; 46 (1): 2327498. DOI: https://doi.org/10.1080/0886022X.2024.2327498

18. Larsen A.M.H., Kuczek D.E., Kalvisa A., Siersbæk M.S., Thor­seth M.L., Johansen A.Z., Carretta M., Grøntved L., Vang O., Madsen D.H. Collagen density modulates the immunosuppressive functions of macrophages. J Immunol. 2020; 205 (5): 1461–72. DOI: https://doi.org/10.4049/jimmunol.1900789

19. Yu W., Song J., Chen S., Nie J., Zhou C., Huang J., Liang H. Myofibroblast-derived exosomes enhance macrophages to myofibroblasts transition and kidney fibrosis. Ren Fail. 2024; 46 (1): 2334406. DOI: https://doi.org/10.1080/0886022X.2024.2334406

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»