References
1. Henderson N.C., Rieder F., Wynn T.A. Fibrosis: from mechanisms to medicines. Nature. 2020; 587 (7835): 555–66. DOI: https://doi.org/10.1038/s41586-020-2938-9
2. Fabre T., Barron A.M.S., Christensen S.M., Asano S., Wadsworth II M.H., Chen X., Wang J., McMahon J., Schlerman F., White A., Kravarik K., Fisher A.J., Borthwick L.A., Hart K.M., Henderson N.C., Wynn T.A., Dower K. identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation in human and murine liver and lung fibrosis. BioRxiv. 2022; 498017. DOI: https://doi.org/10.1101/2022.07.01.498017
3. Belloni A., Furlani M., Greco S., Notarstefano V., Pro C., Randazzo B., Pellegrino P., Zannotti A., Carpini G.D., Ciavattini A., Di Lillo F., Giorgini E., Giuliani A., Cinti S., Ciarmela P. Uterine leiomyoma as useful model to unveil morphometric and macromolecular collagen state and impairment in fibrotic diseases: An ex-vivo human study. Biochim Biophys Acta Mol Basis Dis. 2022; 1868 (12): 166494. DOI: https://doi.org/10.1016/j.bbadis.2022.166494
4. Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014; 35 (4): 2871–82. DOI: https://doi.org/10.1007/s13277-013-1511-7
5. Gupta A.A., Kheur S., Palaskar S.J., Narang B.R. Deciphering the «Collagen code» in tumor progression. J Cancer Res Ther. 2021; 17 (1): 29–32. DOI: https://doi.org/10.4103/jcrt.JCRT_489_17
6. Vannella K.M., Wynn T.A. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017; 79: 593–617. DOI: https://doi.org/10.1146/annurev-physiol-022516-034356
7. Maksimova A.A., Shevela E.Ya., Chernykh E.R. Role of macrophages in the pathogenesis of pulmonary fibrosis. Immunologiya. 2024; 45 (2): 235–44. DOI: https://doi.org/10.33029/1816-2134-2024-45-2-235-244 (in Russian)
8. Maksimova A.A., Sakhno L.V., Ostanin A.A. Fibrogenic and fibrolytic potential of differently activated human macrophages. Medical Immunology (Russia). 2023; 25 (3): 453–8. DOI: https://doi.org/10.15789/1563-0625-FAF-2713 (in Russian)
9. Wang Y., Geng X., Guo Z., Chu D., Liu R., Cheng B., Cui H., Li C., Li J., Li Z. M2 macrophages promote subconjunctival fibrosis through YAP/TAZ signalling. Ann Med. 2024; 56 (1): 2313680. DOI: https://doi.org/10.1080/07853890.2024.2313680
10. Song J., Ke B., Fang X. APC and ZBTB2 may mediate M2 macrophage infiltration to promote the development of renal fibrosis: a bioinformatics analysis. Biomed Res Int. 2024; 2024: 5674711. DOI: https://doi.org/10.1155/2024/5674711
11. Santacroce G., Di Sabatino A. UnTWISTing intestinal fibrosis: single-cell transcriptomics deciphers fibroblast heterogeneity, uncovers molecular pathways, and identifies therapeutic targets. J Clin Invest. 2024; 134 (18): e184112. DOI: https://doi.org/10.1172/JCI184112
12. Efremova N.A., Greshnyakova V.A., Goryacheva L.G. Modern concepts on pathogenetic mechanisms of liver fibrosis. Journal Infectology. 2023; 15 (1): 16–24. DOI: https://doi.org/10.22625/2072-6732-2023-15-1-16-24 (in Russian)
13. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116 (16): e74–80. DOI: https://doi.org/10.1182/blood-2010-02-258558
14. Iwahashi M., Muragaki Y., Ikoma M., Mabuchi Y., Kobayashi A., Tanizaki Y., Ino K. Immunohistochemical analysis of collagen expression in uterine leiomyomata during the menstrual cycle. Exp Ther Med. 2011; 2 (2): 287–90. DOI: https://doi.org/10.3892/etm.2011.186
15. Zhang Y.Z., Wu Y., Li M.J., Mijiti A., Cheng L.F. Identification of macrophage driver genes in fibrosis caused by different heart diseases based on omics integration. J Transl Med. 2024; 22 (1): 839. DOI: https://doi.org/10.1186/s12967-024-05624-7
16. Namakanova O.A., Gubernatorova E.O., Chicherina N.R., Zvartsev R.V., Drutskaya M.S. Experimental mouse model of pulmonary fibrosis induced by nebulized LPS administration. Russian Journal of Immunology. 2024; 27 (2): 145–50. DOI: https://doi.org/10.46235/1028-7221-16876-EMM (in Russian)
17. Zhou Y., Li Z., Yu S., Wang X., Xie T., Zhang W. Iguratimod prevents renal fibrosis in unilateral ureteral obstruction model mice by suppressing M2 macrophage infiltration and macrophage-myofibroblast transition. Ren Fail. 2024; 46 (1): 2327498. DOI: https://doi.org/10.1080/0886022X.2024.2327498
18. Larsen A.M.H., Kuczek D.E., Kalvisa A., Siersbæk M.S., Thorseth M.L., Johansen A.Z., Carretta M., Grøntved L., Vang O., Madsen D.H. Collagen density modulates the immunosuppressive functions of macrophages. J Immunol. 2020; 205 (5): 1461–72. DOI: https://doi.org/10.4049/jimmunol.1900789
19. Yu W., Song J., Chen S., Nie J., Zhou C., Huang J., Liang H. Myofibroblast-derived exosomes enhance macrophages to myofibroblasts transition and kidney fibrosis. Ren Fail. 2024; 46 (1): 2334406. DOI: https://doi.org/10.1080/0886022X.2024.2334406