To the content
1 . 2025

Induction of expression of T-cell receptors against epitopes of melanoma-associated antigens, cloning and production of genetically modified TCR-T cells

Abstract

Introduction. The ability of immune cells to destroy tumor cells due to the recognition of tumor antigens by the T-cell receptor (TCR) and the transmission of activating signals inside the cell underlies modern immunotherapy of oncological diseases. The development of technology for isolating and cloning T-cell receptors and genetic engineering has made it possible to create patient T-cells encoding TCR for tumor antigens, capable of effectively destroying tumor cells.

Aim – production of genetically modified TCR-T cells aimed at recognizing epitopes of antigens associated with melanoma by induction of antigen-specific T cells and sequencing of single cell RNA.

Material and methods. Peripheral blood mononuclear cells from healthy donors with the HLA-A02 genotype were used to generate dendritic cells loaded with peptides to target antigens and subsequent clonal expansion of antigen-specific T cells. TCR sequence analysis was performed using single cell RNA sequencing. Bioinformatic analysis using different approaches allowed us to obtain TCR sequences for subsequent cloning and expression in a lentiviral vector. The obtained vectors were used for T cell transduction and evaluation of cytotoxic activity against melanoma cell lines with the expression of PRAME and MART-1 [SK-Mel-5 and SK-Mel-37, provided by Professor H. Shiku from the collection of the Graduate School of Medicine of the University of Mie (Japan)]. The transduced T cells were cultured with tumor cells in a 10 : 1 ratio, and the cytotoxic effect was assessed by the level of the enzyme lactate dehydrogenase, which is released from the lysed cells.

Results. As a result of clonal expansion, an almost 1000-fold enrichment of the initial population of antigen-specific cells was obtained. Cells with stable expansion of specific TCR and proliferative activity were used for transcriptome analysis on the BD Rhapsody platform. To determine the optimal strategy for selecting antigen-specific TCR, we used the ERGO-II neural network, which predicts the affinity of TCR to the target peptide of the PRAME antigen and determines the dominance of the clonotype for TCR recognizing MART-1. The transduction of T-lymphocytes by lentiviral constructs encoding the obtained TCR resulted in the lysis of at least 30 % of target cells on the first day of interaction with tumor cells.

Conclusion. We have achieved significant enrichment of the target antigen-specific cell population in quantities sufficient for single cell transcriptome analysis and T cell clonotypes. Using single cell RNA sequencing technology, we obtained detailed information about the sequence of each TCR and the immune transcriptome of a single T cell, which made it possible to accurately design the resulting TCR clones, assess the functional state of the cells, and improve the selection of TCR candidate clones. The obtained sequences for TCR were used to develop lentiviral constructs that have shown their effectiveness in the interaction of T cells transduced by these constructs with target cells.

Keywords: T-cell receptor (TCR); melanoma; transciptome; sequencing; affinity; clonotype

For citation: Shevchenko Yu.A., Lopatnikova J.A., Fisher M.S., Kurilin V.V., Philippova J.G., Alsallum A., Alrhmun S., Perik-Zavodskaia O.Yu., Perik-Zavodskii R.Yu., Nazarov K.V., Bulygin A.S., Golikova E.A., Shangina P.A., Gizbrecht A.A., Vorobyeva O.P., Silkov A.N., Sennikov S.V. Induction of expression of T-cell receptors against epitopes of melanoma-associated antigens, cloning and production of genetically modified TCR-T cells. Immunologiya. 2025; 46 (2): 201–14. DOI: https://doi.org/10.33029/1816-2134-2025-46-2-201-214

Funding. The study was supported by a grant from the Russian Science Foundation No. 21-65-00004 (https://rscf.ru/project/21-65-00004).

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. The concept and design of the study – Lopatnikova J.A., Sennikov S.V.; collection and processing of material – Shevchenko Yu.A., Lopatnikova J.A., Fisher M.S., Kurilin V.V., Philippova J.G., Alsallum A., Nazarov K.V., Bulygin A.S., Vorobyeva O.P., Shangina P.A., Gizbrecht A.A.; statistical data processing – Alrhmun S., Perik-Zavodskaia O.Yu., Perik-Zavodskii R.Yu., Vorobyeva O.P.; writing the text – Shevchenko Yu.A., Perik-Zavodskii R.Yu., Golikova E.A.; editing, approval of the final version of the article – Silkov A.N., Sennikov S.V.; responsibility for the integrity of all parts of the article – Sennikov S.V.

References

1. Fesnak A.D., June C.H., Levine B.L. Engineered T cells: the pro­mise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16 (9): 566–81. DOI: https://doi.org/10.1038/nrc.2016.97

2. Baulu E., Gardet C., Chuvin N., Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023; 9 (7): eadf3700. DOI: https://doi.org/10.1126/sciadv.adf3700

3. Liu Y., Yan X., Zhang F., Zhang X., Tang F., Han Z., Li Y. TCR-T immunotherapy: the challenges and solutions. Front Oncol. 2022; 11: 794183. DOI: https://doi.org/10.3389/fonc.2021.794183

4. Zhao Q., Jiang Y., Xiang S., Kaboli P.J., Shen J., Zhao Y., Wu X., Du F., Li M., Cho C.H., Li J, Wen Q, Liu T, Yi T, Xiao Z. Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons. Front Immunol. 2021; 12: 658753. DOI: https://DOI.org/10.3389/fimmu.2021.658753

5. Kuznetsova M.S., Tereshchenko V.P., Shevchenko J.A., Fisher M.S., Kurilin V.V., Alsalloum A., Alrhmoun S., Akahori Y., Shiku H., Sennikov S.V. Phenotypic and functional features of in vitro generated TCR-T lymphocytes specific for the tumor-associated antigen NY-ESO-1. Immunologiya. 2022; 43 (5): 536–47. DOI: https://DOI.org/10.33029/0206-4952-2022-43-5-536-547 (in Russian)

6. Tereshchenko V.P., Kuznetsova M.S., Shevchenko J.A., Fisher M.S., Kurilin V.V., Alsalloum A., Akahori Y., Shiku H., Sennikov S.V. Study of MAGE-A4 specific TCR-like CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (4): 401–11. DOI: https://DOI.org/10.33029/0206-4952-2022-43-4-401-411 (in Russian)

7. van der Bruggen. Cancer antigenic peptide database. URL: https://caped.icp.ucl.ac.be/about (n.d., date of access 20.05.2019)

8. Ikeda H., Lethé B., Lehmann F., van Baren N., Baurain J.F., de Smet C., Chambost H., Vitale M., Moretta A., Boon T., Coulie P.G. Characterization of an antigen that is recognized on a melanoma sho­wing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997; 6 (2): 199–208. DOI: https://doi.org/10.1016/s1074-7613(00)80426-4

9. van Baren N., Chambost H., Ferrant A., Michaux L., Ikeda H., Millard I., Olive D., Boon T., Coulie P.G. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol. 1998; 102 (5): 1376–9. DOI: https://doi.org/10.1046/j.1365-2141.1998.00982.x

10. Goodison S., Urquidi V. The cancer testis antigen PRAME as a biomarker for solid tumor cancer management. Biomark Med. 2012; 6 (5): 629–32. DOI: https://doi.org/10.2217/bmm.12.65

11. Ortmann C.A., Eisele L., Nückel H., Klein-Hitpass L., Führer A., Dührsen U., Zeschnigk M. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008; 87 (10): 809–18. DOI: https://doi.org/10.1007/s00277-008-0514-8

12. Xu Y., Zou R., Wang J., Wang Z.W., Zhu X. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Prolif. 2020; 53 (3): e12770. DOI: https://doi.org/10.1111/cpr.12770

13. Hermes N., Kewitz S., Staege M.S. Preferentially Expressed Antigen in Melanoma (PRAME) and the PRAME family of leucine-rich repeat proteins. Curr Cancer Drug Targets. 2016; 16 (5): 400–14. DOI: https://doi.org/10.2174/1568009616666151222151818

14. Rohaan M.W., Gomez-Eerland R., van den Berg J.H., Geukes Foppen M.H., van Zon M., Raud B., Jedema I., Scheij S., de Boer R., Bakker N.A.M., van den Broek D., Pronk L.M., Grijpink-Ongering L.G., Sari A., Kessels R., van den Haak M., Mallo H.A., Karger M., van de Wiel B.A., Zuur C.L., Duinkerken C.W., Lalezari F., van Thienen J.V., Wilgenhof S., Blank C.U., Beijnen J.H., Nuijen B., Schumacher T.N., Haanen J.B.A.G. MART-1 TCR gene-modified peripheral blood T cells for the treatment of metastatic melanoma: a phase I/IIa clinical trial. Immunooncol Technol. 2022; 15: 100089. DOI: https://doi.org/10.1016/j.iotech.2022.100089

15. Tsimberidou A.M., Van Morris K., Vo H.H., Eck S., Lin Y.F., Rivas J.M., Andersson B.S. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J Hematol Oncol. 2021; 14 (1): DOI: https://doi.org/10.1186/s13045-021-01115-0

16. Tickotsky N., Sagiv T., Prilusky J., Shifrut E., Friedman N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics. 2017; 33 (18): 2924–9. DOI: https://DOI.org/10.1093/bioinformatics/btx286

17. TCRscape/preERGO-II. URL: https://github.com/Perik-Zavodskii/TCRscape/blob/main/pre%20ERGO-II.ipynb

18. TCRscape – a tool for simultaneous multimodal gene expression and clonotype analysis of single T-cells profiled via the BD Rhapsody system. URL: https://github.com/Perik-Zavodskii/TCRscape

19. Human Protein Atlas. URL: www.proteinatlas.org

20. Brasseur F., Rimoldi D., Liénard D., Lethé B., Carrel S., Arienti F., Suter L., Vanwijck R., Bourlond A., Humblet Y., Vacca A., Conese M., Lahaye T., Degiovanni G., Deraemaecker R., Beauduin M., Sastre X., Salamon E., Dréno B., Jäger E., Knuth A., Chevreau C., Suciu S., Lachapelle J-M., Pouillart P., Parmiani G., Lejeune F., Cerottini J-C., Boon T., Marchand M. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer. 1995; 63 (3): 375–80. DOI: https://doi.org/10.1002/ijc.2910630313

21. Brichard V.G., Lejeune D. GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine. 2007; 25 Suppl 2: B61–71. DOI: https://doi.org/10.1016/j.vaccine.2007.06.038

22. Dhodapkar M.V., Osman K., Teruya-Feldstein J., Filippa D., Hedvat C.V., Iversen K., Kolb D., Geller M.D., Hassoun H., Kewalramani T., Comenzo R.L., Coplan K., Chen Y.T., Jungbluth A.A. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun. 2003; 3: 9. PMID: 12875607

23. Frank A.M., Braun A.H., Scheib L., Agarwal S., Schneider I.C., Fusil F., Perian S., Sahin U., Thalheimer F.B., Verhoeyen E., Buchholz C.J. Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 2020; 4 (22): 5702–15. DOI: https://doi.org/10.1182/bloodadvances.2020002229

24. Lythe G., Callard R.E., Hoare R.L., Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol. 2016; 389: 214–24. DOI: https://doi.org/10.1016/j.jtbi.2015.10.016

25. Hato L., Vizcay A., Eguren I., Pérez-Gracia J.L., Rodríguez J., Gállego Pérez-Larraya J., Sarobe P., Inogés S., Díaz de Cerio A.L., Santisteban M. Dendritic cells in cancer immunology and immunotherapy. Cancers (Basel). 2024; 16 (5): 981. DOI: https://doi.org/10.3390/cancers16050981

26. Kuznetsova M., Lopatnikova J., Khantakova J., Maksyutov R., Maksyutov A., Sennikov S. Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes. BMC Immunol. 2017; 18: 31. DOI: https://doi.org/10.1186/s12865-017-0219-7

27. Kuznetsova M., Lopatnikova J., Shevchenko J., Silkov A., Maksyutov A., Sennikov S. Cytotoxic activity and memory T cell subset distribution of in vitro-stimulated CD8+ T cells specific for HER2/neu Epitopes. Front Immunol. 2019; 10: 1017. DOI: https://doi.org/10.3389/fimmu.2019.01017

28. Shevchenko J.A., Khristin A.A., Kurilin V.V., Kuznetsova M.S., Blinova D.D., Starostina N.M., Sidorov S.V., Sennikov S.V. Autologous dendritic cells and activated cytotoxic T-cells as combination therapy for breast cancer. Oncol Rep. 2019; 43: 671–80. DOI: https://doi.org/10.3892/or.2019.7435

29. Obleukhova I., Kiryishina N., Falaleeva S., Lopatnikova J., Kurilin V., Kozlov V., Vitsin A., Cherkasov A., Kulikova E., Sennikov S. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer. Oncol Lett. 2018; 15: 1297–306. DOI: https://doi.org/10.3892/OL.2017.7403

30. Perik-Zavodskaia O.Yu., Perik-Zavodskii R.Yu., Sennikov S.V. Innovative approaches in immunology: single cell multi-omics and spatial transcriptomics. Immunologiya. 2024; 45 (4): 414–26. DOI: https://DOI.org/10.33029/1816-2134-202445-4-414-426 (in Russian)

31. Adamopoulos P.G., Tsiakanikas P., Stolidi I., Scorilas A. A versatile 5’ RACE-Seq methodology for the accurate identification of the 5’ termini of mRNAs. BMC Genomics. 2022; 23 (1): 163. DOI: https://doi.org/10.1186/s12864-022-08386-y

32. Alsalloum A., Alrhmoun S., Perik-Zavosdkaia O., Fisher M., Volynets M., Lopatnikova J., Perik-Zavodskii R., Shevchenko J., Philippova J., Solovieva O., Zavjalov E., Kurilin V., Shiku H., Silkov A., Sennikov S. Decoding NY-ESO-1 TCR T cells: transcriptomic insights reveal dual mechanisms of tumor targeting in a melanoma murine xenograft model. Front Immunol. 2024; 15: 1507218. DOI: https://doi.org/10.3389/fimmu.2024.1507218

33. Alsalloum A., Alrhmoun S., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Lopatnikova J., Kurilin V., Volynets M., Akahori Y., Shiku H., Silkov A., Sennikov S. TCR-engineered lymphocytes targeting NY-ESO-1: in vitro assessment of cytotoxicity against tumors. Biomedicines. 2023; 11 (10): 2805. DOI: https://doi.org/10.3390/biomedicines11102805

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»