References
1. Fesnak A.D., June C.H., Levine B.L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16 (9): 566–81. DOI: https://doi.org/10.1038/nrc.2016.97
2. Baulu E., Gardet C., Chuvin N., Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023; 9 (7): eadf3700. DOI: https://doi.org/10.1126/sciadv.adf3700
3. Liu Y., Yan X., Zhang F., Zhang X., Tang F., Han Z., Li Y. TCR-T immunotherapy: the challenges and solutions. Front Oncol. 2022; 11: 794183. DOI: https://doi.org/10.3389/fonc.2021.794183
4. Zhao Q., Jiang Y., Xiang S., Kaboli P.J., Shen J., Zhao Y., Wu X., Du F., Li M., Cho C.H., Li J, Wen Q, Liu T, Yi T, Xiao Z. Engineered TCR-T cell immunotherapy in anticancer precision medicine: pros and cons. Front Immunol. 2021; 12: 658753. DOI: https://DOI.org/10.3389/fimmu.2021.658753
5. Kuznetsova M.S., Tereshchenko V.P., Shevchenko J.A., Fisher M.S., Kurilin V.V., Alsalloum A., Alrhmoun S., Akahori Y., Shiku H., Sennikov S.V. Phenotypic and functional features of in vitro generated TCR-T lymphocytes specific for the tumor-associated antigen NY-ESO-1. Immunologiya. 2022; 43 (5): 536–47. DOI: https://DOI.org/10.33029/0206-4952-2022-43-5-536-547 (in Russian)
6. Tereshchenko V.P., Kuznetsova M.S., Shevchenko J.A., Fisher M.S., Kurilin V.V., Alsalloum A., Akahori Y., Shiku H., Sennikov S.V. Study of MAGE-A4 specific TCR-like CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (4): 401–11. DOI: https://DOI.org/10.33029/0206-4952-2022-43-4-401-411 (in Russian)
7. van der Bruggen. Cancer antigenic peptide database. URL: https://caped.icp.ucl.ac.be/about (n.d., date of access 20.05.2019)
8. Ikeda H., Lethé B., Lehmann F., van Baren N., Baurain J.F., de Smet C., Chambost H., Vitale M., Moretta A., Boon T., Coulie P.G. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997; 6 (2): 199–208. DOI: https://doi.org/10.1016/s1074-7613(00)80426-4
9. van Baren N., Chambost H., Ferrant A., Michaux L., Ikeda H., Millard I., Olive D., Boon T., Coulie P.G. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol. 1998; 102 (5): 1376–9. DOI: https://doi.org/10.1046/j.1365-2141.1998.00982.x
10. Goodison S., Urquidi V. The cancer testis antigen PRAME as a biomarker for solid tumor cancer management. Biomark Med. 2012; 6 (5): 629–32. DOI: https://doi.org/10.2217/bmm.12.65
11. Ortmann C.A., Eisele L., Nückel H., Klein-Hitpass L., Führer A., Dührsen U., Zeschnigk M. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008; 87 (10): 809–18. DOI: https://doi.org/10.1007/s00277-008-0514-8
12. Xu Y., Zou R., Wang J., Wang Z.W., Zhu X. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Prolif. 2020; 53 (3): e12770. DOI: https://doi.org/10.1111/cpr.12770
13. Hermes N., Kewitz S., Staege M.S. Preferentially Expressed Antigen in Melanoma (PRAME) and the PRAME family of leucine-rich repeat proteins. Curr Cancer Drug Targets. 2016; 16 (5): 400–14. DOI: https://doi.org/10.2174/1568009616666151222151818
14. Rohaan M.W., Gomez-Eerland R., van den Berg J.H., Geukes Foppen M.H., van Zon M., Raud B., Jedema I., Scheij S., de Boer R., Bakker N.A.M., van den Broek D., Pronk L.M., Grijpink-Ongering L.G., Sari A., Kessels R., van den Haak M., Mallo H.A., Karger M., van de Wiel B.A., Zuur C.L., Duinkerken C.W., Lalezari F., van Thienen J.V., Wilgenhof S., Blank C.U., Beijnen J.H., Nuijen B., Schumacher T.N., Haanen J.B.A.G. MART-1 TCR gene-modified peripheral blood T cells for the treatment of metastatic melanoma: a phase I/IIa clinical trial. Immunooncol Technol. 2022; 15: 100089. DOI: https://doi.org/10.1016/j.iotech.2022.100089
15. Tsimberidou A.M., Van Morris K., Vo H.H., Eck S., Lin Y.F., Rivas J.M., Andersson B.S. T-cell receptor-based therapy: an innovative therapeutic approach for solid tumors. J Hematol Oncol. 2021; 14 (1): DOI: https://doi.org/10.1186/s13045-021-01115-0
16. Tickotsky N., Sagiv T., Prilusky J., Shifrut E., Friedman N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics. 2017; 33 (18): 2924–9. DOI: https://DOI.org/10.1093/bioinformatics/btx286
17. TCRscape/preERGO-II. URL: https://github.com/Perik-Zavodskii/TCRscape/blob/main/pre%20ERGO-II.ipynb
18. TCRscape – a tool for simultaneous multimodal gene expression and clonotype analysis of single T-cells profiled via the BD Rhapsody system. URL: https://github.com/Perik-Zavodskii/TCRscape
19. Human Protein Atlas. URL: www.proteinatlas.org
20. Brasseur F., Rimoldi D., Liénard D., Lethé B., Carrel S., Arienti F., Suter L., Vanwijck R., Bourlond A., Humblet Y., Vacca A., Conese M., Lahaye T., Degiovanni G., Deraemaecker R., Beauduin M., Sastre X., Salamon E., Dréno B., Jäger E., Knuth A., Chevreau C., Suciu S., Lachapelle J-M., Pouillart P., Parmiani G., Lejeune F., Cerottini J-C., Boon T., Marchand M. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer. 1995; 63 (3): 375–80. DOI: https://doi.org/10.1002/ijc.2910630313
21. Brichard V.G., Lejeune D. GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development. Vaccine. 2007; 25 Suppl 2: B61–71. DOI: https://doi.org/10.1016/j.vaccine.2007.06.038
22. Dhodapkar M.V., Osman K., Teruya-Feldstein J., Filippa D., Hedvat C.V., Iversen K., Kolb D., Geller M.D., Hassoun H., Kewalramani T., Comenzo R.L., Coplan K., Chen Y.T., Jungbluth A.A. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun. 2003; 3: 9. PMID: 12875607
23. Frank A.M., Braun A.H., Scheib L., Agarwal S., Schneider I.C., Fusil F., Perian S., Sahin U., Thalheimer F.B., Verhoeyen E., Buchholz C.J. Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 2020; 4 (22): 5702–15. DOI: https://doi.org/10.1182/bloodadvances.2020002229
24. Lythe G., Callard R.E., Hoare R.L., Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol. 2016; 389: 214–24. DOI: https://doi.org/10.1016/j.jtbi.2015.10.016
25. Hato L., Vizcay A., Eguren I., Pérez-Gracia J.L., Rodríguez J., Gállego Pérez-Larraya J., Sarobe P., Inogés S., Díaz de Cerio A.L., Santisteban M. Dendritic cells in cancer immunology and immunotherapy. Cancers (Basel). 2024; 16 (5): 981. DOI: https://doi.org/10.3390/cancers16050981
26. Kuznetsova M., Lopatnikova J., Khantakova J., Maksyutov R., Maksyutov A., Sennikov S. Generation of populations of antigen-specific cytotoxic T cells using DCs transfected with DNA construct encoding HER2/neu tumor antigen epitopes. BMC Immunol. 2017; 18: 31. DOI: https://doi.org/10.1186/s12865-017-0219-7
27. Kuznetsova M., Lopatnikova J., Shevchenko J., Silkov A., Maksyutov A., Sennikov S. Cytotoxic activity and memory T cell subset distribution of in vitro-stimulated CD8+ T cells specific for HER2/neu Epitopes. Front Immunol. 2019; 10: 1017. DOI: https://doi.org/10.3389/fimmu.2019.01017
28. Shevchenko J.A., Khristin A.A., Kurilin V.V., Kuznetsova M.S., Blinova D.D., Starostina N.M., Sidorov S.V., Sennikov S.V. Autologous dendritic cells and activated cytotoxic T-cells as combination therapy for breast cancer. Oncol Rep. 2019; 43: 671–80. DOI: https://doi.org/10.3892/or.2019.7435
29. Obleukhova I., Kiryishina N., Falaleeva S., Lopatnikova J., Kurilin V., Kozlov V., Vitsin A., Cherkasov A., Kulikova E., Sennikov S. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer. Oncol Lett. 2018; 15: 1297–306. DOI: https://doi.org/10.3892/OL.2017.7403
30. Perik-Zavodskaia O.Yu., Perik-Zavodskii R.Yu., Sennikov S.V. Innovative approaches in immunology: single cell multi-omics and spatial transcriptomics. Immunologiya. 2024; 45 (4): 414–26. DOI: https://DOI.org/10.33029/1816-2134-202445-4-414-426 (in Russian)
31. Adamopoulos P.G., Tsiakanikas P., Stolidi I., Scorilas A. A versatile 5’ RACE-Seq methodology for the accurate identification of the 5’ termini of mRNAs. BMC Genomics. 2022; 23 (1): 163. DOI: https://doi.org/10.1186/s12864-022-08386-y
32. Alsalloum A., Alrhmoun S., Perik-Zavosdkaia O., Fisher M., Volynets M., Lopatnikova J., Perik-Zavodskii R., Shevchenko J., Philippova J., Solovieva O., Zavjalov E., Kurilin V., Shiku H., Silkov A., Sennikov S. Decoding NY-ESO-1 TCR T cells: transcriptomic insights reveal dual mechanisms of tumor targeting in a melanoma murine xenograft model. Front Immunol. 2024; 15: 1507218. DOI: https://doi.org/10.3389/fimmu.2024.1507218
33. Alsalloum A., Alrhmoun S., Shevchenko J., Fisher M., Philippova J., Perik-Zavodskii R., Perik-Zavodskaia O., Lopatnikova J., Kurilin V., Volynets M., Akahori Y., Shiku H., Silkov A., Sennikov S. TCR-engineered lymphocytes targeting NY-ESO-1: in vitro assessment of cytotoxicity against tumors. Biomedicines. 2023; 11 (10): 2805. DOI: https://doi.org/10.3390/biomedicines11102805