References
1. Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018; 378 (5): 439–48. DOI: https://doi.org/10.1056/NEJMoa1709866
2. Sadelain M., Brentjens R., Riviere I. The basic principles of chimeric antigen receptor (CAR) design. Cancer Discov. 2013; 3 (4): 388–98. DOI: https://doi.org/10.1158/2159-8290.CD-12-0548
3. Yang X., Wang G.X., Zhou J.F. CAR T cell therapy for hematological malignancies. Curr Med Sci. 2019; 39 (6): 874–82. DOI: https://doi.org/10.1007/s11596-019-2118-z
4. Kiselevsky M.V., Chikileva I.O., Sitdikova S.M., Vlasenko R.Ya., Karaulov A.V. Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the therapy of solid tumors. Immunologiya. 2019; 40: 48–55. DOI: https://doi.org/10.24411/0206-4952-2019-14006 (in Russian)
5. Philippova J., Shevchenko J., Sennikov S. GD2-targeting therapy : a comparative analysis of approaches and promising directions. Front Immunol. 2024; 15: 1–27. DOI: https://doi.org/10.3389/fimmu.2024.1371345
6. Cheng M., Ahmed M., Xu H., Cheung N.K. Structural design of disialoganglioside GD2 and CD3-bispecific antibodies to redirect T cells for tumor therapy. Int J Cancer. 2015; 136 (2): 476–86. DOI: https://doi.org/10.1002/ijc.29007
7. Lopatnikova J.A., Shevchenko J.A., Filippova J.G., Fisher M.S., Obleuhova I.A., Zavjalov E.L., Solovjeva O.I., Razumov I.A., Akahori Ya., Shiku H., Sennikov S.V. Development of experimental mouse xenograft models of human tumors for preclinical in vivo studies of product for cellular immunotherapy. Immunologiya. 2023; 44 (6): 709–20. DOI: https://doi.org/10.33029/0206-4952-2023-44-6-709-720 (in Russian)
8. Ahmed E.N., Cutmore L.C., Marshall J.F. Syngeneic mouse models for pre-clinical evaluation of CAR T cells. Cancers (Basel). 2024; 16 (18): 3186. DOI: https://doi.org/10.3390/cancers16183186
9. Duncan B.B., Dunbar C. E., Ishii K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol Ther Methods Clin Dev. 2022; 27: 17–31. DOI: https://doi.org/10.1016/j.omtm.2022.08.008
10. Philippova J.G., Kuznetsova M.S., Shevchenko J.A., Tereshchenko V.P., Fisher M.S., Kurilin V.V., Pashkina E.A., Akahori Ya., Shiku H., Sennikov S.V. Phenotype and effector functions of GD2-specific CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (5): 525–35. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-525-535 (in Russian)
11. Hu B., Ren J., Luo Y., Keith B., Young R.M., Scholler J., Zhao Y., June C.H. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017; 20 (13): 3025–33. DOI: https://doi.org/10.1016/j.celrep.2017.09.002
12. Pinchuk L.M., Filipov N.M. Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing. 2008; 5: 1. DOI: https://doi.org/10.1186/1742-4933-5-1
13. Lanitis E., Rota G., Kosti P., Ronet C., Spill A., Seijo B., Romero P., Dangaj D., Coukos G., Irving M. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med. 2021; 218 (2): e20192203. DOI: https://doi.org/10.1084/jem.20192203
14. McLellan A.D., Kapp M., Eggert A., Linden C., Bommhardt U., Bröcker E.B., Kämmerer U., Kämpgen E. Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood. 2002; 99 (6): 2084–93. DOI: https://doi.org/10.1182/blood.v99.6.2084
15. Tian J., Zhang B., Rui K., Wang S. The role of GITR/GITRL interaction in autoimmune diseases. Front Immunol. 2020; 11: 588682. DOI: https://doi.org/10.3389/fimmu.2020.588682
16. Nakajima Y., Chamoto K., Oura T., Honjo T. Critical role of the CD44lowCD62Llow CD8+ T cell subset in restoring antitumor immunity in aged mice. Proc Natl Acad Sci USA. 2021; 118 (23): e2103730118. DOI: https://doi.org/10.1073/pnas.2103730118
17. Skordos I., Demeyer A., Beyaert R. Analysis of T cells in mouse lymphoid tissue and blood with flow cytometry. STAR Protoc. 2021; 2 (1): 100351. DOI: https://doi.org/10.1016/j.xpro.2021.100351
18. Klebanoff C.A., Gattinoni L., Torabi-Parizi P., Kerstann K., Cardones A.R., Finkelstein S.E., Palmer D.C., Antony P.A., Hwang S.T., Rosenberg S.A., Waldmann T.A., Restifo N.P. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA. 2005; 102 (27): 9571–6. DOI: https://doi.org/10.1073/pnas.0503726102
19. Jafarzadeh L., Masoumi E., Mirzaei H.R., Alishah K., Fallah-Mehrjardi K., Khakpoor-Koosheh M., Rostamian H., Noorbakhsh F., Hadjati J. Targeted knockdown of Tim3 by short hairpin RNAs improves the function of anti-mesothelin CAR T cells. Mol Immunol. 2021; 139: 1–9. DOI: https://doi.org/10.1016/j.molimm.2021.06.007
20. Bulygin A.S., Philippova J.G., Alsalloum A., Alrhmoun S., Kireev F.D., Shevchenko J.A., Fisher M.S., Perik-Zavodskii R.Yu., Perik-Zavodskaia O.Yu., Nazarov K.V., Shiku H., Golikova E.A., Obleuhova I.A., Silkov A.N., Sennikov S.V. Determination of the phenotype and cytokine production of TCR-like CAR/CAR/TCR T cells upon contact with tumor cell spheroids in vitro. Immunologiya. 2025; 46 (1): 51–61. DOI: https://doi.org/10.33029/1816-2134-2025-46-1-51-61 (in Russian)
21. Wherry E.J. T cell exhaustion. Nat Immunol. 2011; 12 (6): 492–9. DOI: https://doi.org/10.1038/ni.2035
22. Simon S., Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology. 2017; 7 (1): e1364828. DOI: https://doi.org/10.1080/2162402X.2017.1364828
23. Pauken K.E., Godec J., Odorizzi P.M., Brown K.E., Yates K.B., Ngiow S.F., Burke K.P., Maleri S., Grande S.M., Francisco L.M., Ali M.A., Imam S., Freeman G.J., Haining W.N., Wherry E.J., Sharpe A.H. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 2020; 31 (13): 107827. DOI: https://doi.org/10.1016/j.celrep.2020.107827
24. Atar D., Mast A.S., Scheuermann S., Ruoff L., Seitz C.M., Schlegel P. Adapter CAR T cell therapy for the treatment of B-lineage lymphomas. Biomedicines. 2022; 10 (10): 2420. DOI: https://doi.org/10.3390/biomedicines10102420
25. Dragon A.C., Zimmermann K., Nerreter T., Sandfort D., Lahrberg J., Klöß S., Kloth C., Mangare C., Bonifacius A., Tischer-Zimmermann S., Blasczyk R., Maecker-Kolhoff B., Uchanska-Ziegler B., Abken H., Schambach A., Hudecek M., Eiz-Vesper B. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. J Immunother Cancer. 2020; 8 (2): e000736. DOI: https://doi.org/10.1136/jitc-2020-000736
26. Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017; 47 (6): 946–53. DOI: https://doi.org/10.1002/eji.201646837
27. Koyama-Nasu R., Wang Y., Hasegawa I., Endo Y., Nakayama T., Kimura M.Y. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol. 2022; 34 (11): 555–61. DOI: https://doi.org/10.1093/intimm/dxac024
28. Habib-Agahi M., Jaberipour M., Searle P.F. 4-1BBL costimulation retrieves CD28 expression in activated T cells. Cell Immunol. 2009; 256 (1–2): 39–46. DOI: https://doi.org/10.1016/j.cellimm.2009.01.003
29. Long A.H., Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., Smith J.P., Walker A.J., Kohler M.E., Venkateshwara V.R., Kaplan R.N., Patterson G.H., Fry T.J., Orentas R.J., Mackall C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015; 21 (6): 581–90. DOI: https://doi.org/10.1038/nm.3838
30. Kuhn N.F., Purdon T.J., van Leeuwen D.G., Lopez A.V., Curran K.J., Daniyan A.F., Brentjens R.J. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 2019; 35 (3): 473–88. DOI: https://doi.org/10.1016/j.ccell.2019.02.006
31. Lorenzo-Herrero S., Sordo-Bahamonde C., Gonzalez S., López-Soto A. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol Biol. 2019; 1884: 119–30. DOI: https://doi.org/10.1007/978-1-4939-8885-3_7
32. Testa U., Castelli G., Pelosi E. CAR-T cells in the treatment of nervous system tumors. Cancers (Basel). 2024; 16 (16): 2913. DOI: https://doi.org/10.3390/cancers16162913
33. Giavridis T., van der Stegen S.J.C., Eyquem J., Hamieh M., Piersigilli A., Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018; 24 (6): 731–8. DOI: https://doi.org/10.1038/s41591-018-0041-7