To the content
1 . 2025

Phenotypic and functional characteristics of GD2-specific murine CAR T cells in vitro and in vivo

Abstract

Introduction. The adoptive transfer of ex vivo chimeric antigen receptor (CAR)-modified autologous T cells represents a promising approach to the treatment of hematological malignancies, but the treatment of solid tumors remains a challenge. Disialoganglioside (GD2) is a potential target for CAR T cell therapy of solid tumors, due to the high degree of homology between human and murine antigens. The syngeneic murine model with homologous antigen, as an additional preclinical approach, offers significant potential for the optimization of CAR-T technology, and, in turn, may facilitate the successful clinical trials for solid tumors.

Aim of the study was to evaluate the phenotypic and cytotoxic properties of murine GD2-specific CAR T cells in vitro, and their antigen-specific antitumor activity in vivo in the syngeneic B78-21 melanoma model.

Material and methods. The study was conducted using mice of the C57Bl/6 line. Murine CD3+ T cells isolated by magnetic separation were transduced with a retroviral vector enco­ding the GITR ligand (GITRL) and a GD2-specific CAR. The phenotype of GD2-specific CAR T cells was analyzed by flow cytometry with regard to the T cell memory markers CD44 and CD62L, and the T cell depletion markers PD-1 and TIM-3. The in vitro cytotoxic characteristics of transduced cells co-cultivated with target cells (GD2+ cells B78-21 and GD2 cells B78-P4) were evaluated by the assay of lactate dehydrogenase content in conditioned media and by flow cytometry to determine the presence of activation markers (CD69, CD137, CD154) and cytotoxicity markers (CD107a, CD178). The in vivo antitumor activity of the transduced cells was investigated using the GD2-positive syngeneic B78-21 melanoma model and a single administration of GD2-specific CAR T cells at a dose of 5 - 106 cells per mouse.

Results. The generation of murine CAR T cells through retroviral transduction resulted in the production of the population of CD8+ cells that was twice the size of the CD4+ cells proportion. This population is dominated by effector memory CD44+CD62L cells, but transduction resulted in an increase in the proportion of central memory CD44+CD62L+ cells and cells expressing the TIM-3 exhaustion marker in both population. The interaction with GD2+ target cells resulted in a significant increase in the proportion of transduced cells expressing the activation markers CD69, CD137, CD154, the cytotoxicity marker CD107a, and a discernible tendency for an increase in the marker CD178. The in vitro cytotoxicity assay demonstrated that the transduced T cells not only exhibited cytotoxic potential, but also demonstrated antigen specificity for GD2+ tumor cells. The in vivo antitumor activity of murine CAR T cells was demonstrated by their capacity to inhibit tumor node growth, and the survival rate of tumor-bearing mice was 85 days. The median overall survival of mice following infusion of transduced cells was 61,5 days, which is twice as long as the control groups.

Conclusion. The resulting murine CAR T cells have the phenotype of cytotoxic T lymphocytes and exhibit antigen-specific properties both in vitro, against GD2-positive tumor cell lines, and in vivo, in the syngeneic B78-21 melanoma model.

Keywords: GD2; murine CAR T cells; retroviral transduction; cytotoxicity; syngeneic B78-21 melanoma model

For citation: Philippova Ju.G., Shevchenko Ju.A., Nazarov K.V., Kurilin V.V., Fisher M.S., Shiku H., Sennikov S.V. Phenotypic and functional characteristics of GD2-specific murine CAR T cells in vitro and in vivo. Immunologiya. 2025; 46 (2): 215–28. DOI: https://doi.org/10.33029/1816-2134-2025-46-2-215-228

Funding. The study was supported by the grant of Russian Science Foundation No. 21-65-00004.

Conflicts of interests. Authors declare no conflict of interests.

Authors’ contributions. The concept and design of the study – Philippova Ju.G., Shevchenko Ju.A., Shiku H., Sennikov S.V.; collection and processing of material – Philippova Ju.G., Shevchenko Ju.A., Nazarov K.V., Kurilin V.V., Fisher M.S.; statistical processing – Philippova Ju.G.; writing the text – Philippova Ju.G., Shevchenko Ju.A.; editing – Sennikov S.V.

References

1. Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018; 378 (5): 439–48. DOI: https://doi.org/10.1056/NEJMoa1709866

2. Sadelain M., Brentjens R., Riviere I. The basic principles of chimeric antigen receptor (CAR) design. Cancer Discov. 2013; 3 (4): 388–98. DOI: https://doi.org/10.1158/2159-8290.CD-12-0548

3. Yang X., Wang G.X., Zhou J.F. CAR T cell therapy for hematological malignancies. Curr Med Sci. 2019; 39 (6): 874–82. DOI: https://doi.org/10.1007/s11596-019-2118-z

4. Kiselevsky M.V., Chikileva I.O., Sitdikova S.M., Vlasenko R.Ya., Karaulov A.V. Prospectives of application of the genetically modified lymphocytes with chimeric T-cell receptor (CAR-T-cells) for the the­rapy of solid tumors. Immunologiya. 2019; 40: 48–55. DOI: https://doi.org/10.24411/0206-4952-2019-14006 (in Russian)

5. Philippova J., Shevchenko J., Sennikov S. GD2-targeting therapy : a comparative analysis of approaches and promising directions. Front Immunol. 2024; 15: 1–27. DOI: https://doi.org/10.3389/fimmu.2024.1371345

6. Cheng M., Ahmed M., Xu H., Cheung N.K. Structural design of disialoganglioside GD2 and CD3-bispecific antibodies to redirect T cells for tumor therapy. Int J Cancer. 2015; 136 (2): 476–86. DOI: https://doi.org/10.1002/ijc.29007

7. Lopatnikova J.A., Shevchenko J.A., Filippova J.G., Fisher M.S., Obleuhova I.A., Zavjalov E.L., Solovjeva O.I., Razumov I.A., Akahori Ya., Shiku H., Sennikov S.V. Development of experimental mouse xenograft models of human tumors for preclinical in vivo studies of product for cellular immunotherapy. Immunologiya. 2023; 44 (6): 709–20. DOI: https://doi.org/10.33029/0206-4952-2023-44-6-709-720 (in Russian)

8. Ahmed E.N., Cutmore L.C., Marshall J.F. Syngeneic mouse models for pre-clinical evaluation of CAR T cells. Cancers (Basel). 2024; 16 (18): 3186. DOI: https://doi.org/10.3390/cancers16183186

9. Duncan B.B., Dunbar C. E., Ishii K. Applying a clinical lens to animal models of CAR-T cell therapies. Mol Ther Methods Clin Dev. 2022; 27: 17–31. DOI: https://doi.org/10.1016/j.omtm.2022.08.008

10. Philippova J.G., Kuznetsova M.S., Shevchenko J.A., Tereshchenko V.P., Fisher M.S., Kurilin V.V., Pashkina E.A., Akahori Ya., Shiku H., Sennikov S.V. Phenotype and effector functions of GD2-specific CAR-T lymphocytes in vitro. Immunologiya. 2022; 43 (5): 525–35. DOI: https://doi.org/10.33029/0206-4952-2022-43-5-525-535 (in Russian)

11. Hu B., Ren J., Luo Y., Keith B., Young R.M., Scholler J., Zhao Y., June C.H. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017; 20 (13): 3025–33. DOI: https://doi.org/10.1016/j.celrep.2017.09.002

12. Pinchuk L.M., Filipov N.M. Differential effects of age on circula­ting and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun Ageing. 2008; 5: 1. DOI: https://doi.org/10.1186/1742-4933-5-1

13. Lanitis E., Rota G., Kosti P., Ronet C., Spill A., Seijo B., Romero P., Dangaj D., Coukos G., Irving M. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med. 2021; 218 (2): e20192203. DOI: https://doi.org/10.1084/jem.20192203

14. McLellan A.D., Kapp M., Eggert A., Linden C., Bommhardt U., Bröcker E.B., Kämmerer U., Kämpgen E. Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood. 2002; 99 (6): 2084–93. DOI: https://doi.org/10.1182/blood.v99.6.2084

15. Tian J., Zhang B., Rui K., Wang S. The role of GITR/GITRL interaction in autoimmune diseases. Front Immunol. 2020; 11: 588682. DOI: https://doi.org/10.3389/fimmu.2020.588682

16. Nakajima Y., Chamoto K., Oura T., Honjo T. Critical role of the CD44lowCD62Llow CD8+ T cell subset in restoring antitumor immunity in aged mice. Proc Natl Acad Sci USA. 2021; 118 (23): e2103730118. DOI: https://doi.org/10.1073/pnas.2103730118

17. Skordos I., Demeyer A., Beyaert R. Analysis of T cells in mouse lymphoid tissue and blood with flow cytometry. STAR Protoc. 2021; 2 (1): 100351. DOI: https://doi.org/10.1016/j.xpro.2021.100351

18. Klebanoff C.A., Gattinoni L., Torabi-Parizi P., Kerstann K., Cardones A.R., Finkelstein S.E., Palmer D.C., Antony P.A., Hwang S.T., Rosenberg S.A., Waldmann T.A., Restifo N.P. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA. 2005; 102 (27): 9571–6. DOI: https://doi.org/10.1073/pnas.0503726102

19. Jafarzadeh L., Masoumi E., Mirzaei H.R., Alishah K., Fallah-Mehrjardi K., Khakpoor-Koosheh M., Rostamian H., Noorbakhsh F., Hadjati J. Targeted knockdown of Tim3 by short hairpin RNAs improves the function of anti-mesothelin CAR T cells. Mol Immunol. 2021; 139: 1–9. DOI: https://doi.org/10.1016/j.molimm.2021.06.007

20.Bulygin A.S., Philippova J.G., Alsalloum A., Alrhmoun S., Kireev F.D., Shevchenko J.A., Fisher M.S., Perik-Zavodskii R.Yu., Perik-Zavodskaia O.Yu., Nazarov K.V., Shiku H., Golikova E.A., Obleuhova I.A., Silkov A.N., Sennikov S.V. Determination of the phenotype and cytokine production of TCR-like CAR/CAR/TCR T cells upon contact with tumor cell spheroids in vitro. Immunologiya. 2025; 46 (1): 51–61. DOI: https://doi.org/10.33029/1816-2134-2025-46-1-51-61 (in Russian)

21.Wherry E.J. T cell exhaustion. Nat Immunol. 2011; 12 (6): 492–9. DOI: https://doi.org/10.1038/ni.2035

22.Simon S., Labarriere N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology. 2017; 7 (1): e1364828. DOI: https://doi.org/10.1080/2162402X.2017.1364828

23.Pauken K.E., Godec J., Odorizzi P.M., Brown K.E., Yates K.B., Ngiow S.F., Burke K.P., Maleri S., Grande S.M., Francisco L.M., Ali M.A., Imam S., Freeman G.J., Haining W.N., Wherry E.J., Sharpe A.H. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 2020; 31 (13): 107827. DOI: https://doi.org/10.1016/j.celrep.2020.107827

24.Atar D., Mast A.S., Scheuermann S., Ruoff L., Seitz C.M., Schlegel P. Adapter CAR T cell therapy for the treatment of B-lineage lymphomas. Biomedicines. 2022; 10 (10): 2420. DOI: https://doi.org/10.3390/biomedicines10102420

25.Dragon A.C., Zimmermann K., Nerreter T., Sandfort D., Lahrberg J., Klöß S., Kloth C., Mangare C., Bonifacius A., Tischer-Zimmermann S., Blasczyk R., Maecker-Kolhoff B., Uchanska-Ziegler B., Abken H., Schambach A., Hudecek M., Eiz-Vesper B. CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. J Immunother Cancer. 2020; 8 (2): e000736. DOI: https://doi.org/10.1136/jitc-2020-000736

26.Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017; 47 (6): 946–53. DOI: https://doi.org/10.1002/eji.201646837

27.Koyama-Nasu R., Wang Y., Hasegawa I., Endo Y., Nakayama T., Kimura M.Y. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol. 2022; 34 (11): 555–61. DOI: https://doi.org/10.1093/intimm/dxac024

28.Habib-Agahi M., Jaberipour M., Searle P.F. 4-1BBL costimulation retrieves CD28 expression in activated T cells. Cell Immunol. 2009; 256 (1–2): 39–46. DOI: https://doi.org/10.1016/j.cellimm.2009.01.003

29.Long A.H., Haso W.M., Shern J.F., Wanhainen K.M., Murgai M., Ingaramo M., Smith J.P., Walker A.J., Kohler M.E., Venkateshwara V.R., Kaplan R.N., Patterson G.H., Fry T.J., Orentas R.J., Mackall C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015; 21 (6): 581–90. DOI: https://doi.org/10.1038/nm.3838

30.Kuhn N.F., Purdon T.J., van Leeuwen D.G., Lopez A.V., Curran K.J., Daniyan A.F., Brentjens R.J. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 2019; 35 (3): 473–88. DOI: https://doi.org/10.1016/j.ccell.2019.02.006

31.Lorenzo-Herrero S., Sordo-Bahamonde C., Gonzalez S., López-Soto A. CD107a degranulation assay to evaluate immune cell antitumor activity. Methods Mol Biol. 2019; 1884: 119–30. DOI: https://doi.org/10.1007/978-1-4939-8885-3_7

32.Testa U., Castelli G., Pelosi E. CAR-T cells in the treatment of nervous system tumors. Cancers (Basel). 2024; 16 (16): 2913. DOI: https://doi.org/10.3390/cancers16162913

33.Giavridis T., van der Stegen S.J.C., Eyquem J., Hamieh M., Piersigilli A., Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018; 24 (6): 731–8. DOI: https://doi.org/10.1038/s41591-018-0041-7

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»