To the content
2 . 2025

Induction of tolerance to allogeneic transplant using the strategy of mixed hematopoietic chimerism: studies in large animal models

Abstract

The review presents the collected material on the induction of tolerance to allografts in large animal models (pigs and non-human primates) in preclinical studies. Since progress in clinical transplantology is impossible without the use of step-by-step studies in preclinical models on large animals, experiments on these models are still relevant.

The technique of tolerance induction described in this review involves the formation of chimerism in recipients after hematopoietic stem cell transplantation based on the in vivo removal of newly formed donor-reactive T lymphocytes during their interaction in the thymus with donor antigen-presenting cells, with parallel development of tolerance to the organ transplanted from the same donor.

The presented data demonstrate that hematopoietic stem cell transplantation is a real alternative to lifelong use of immunosuppressive drugs. It is necessary to continue research in order to understand the immunological mechanisms underlying tolerance based on mixed chimerism in order to use potential targets and necessary manipulations for future strategies of tolerance induction. Knowledge gained from large animal models may have direct implications for various human donor transplant and will greatly enhance the implementation of tolerance induction protocols to prevent rejection of donor organs and tissue assemblies.

Keywords: tolerance induction; allograft; hematopoietic chimerism; pigs; nonhuman primates

For citation: Nikitina O.S., Komogorova V.V., Grin’ko E.K., Kireev B.V., Donetskova A.D., Mitin A.N. Induction of tolerance to allogeneic transplant using the strategy of mixed hematopoietic chimerism: studies in large animal models. Immunologiya. 2025; 46 (2): 229–42. DOI: https://doi.org/10.33029/1816-2134-2025-46-2-229-242 (in Russian)

Funding. Advanced Research Foundation supported the study.

Conflict of interests. Authors declare no conflict of interests.

Authors’ contribution. Search, collection of information, writing of the text – Nikitina O.S., Komogorova V.V., Grin’ko E.K., Kireev B.V.; editing of the article – Donetskova A.D., Mitin A.N.

References

1. Messner F., Etra J.W., Dodd-O J.M., Brandacher G. Chimerism, transplant tolerance, and beyond. Transplantation. 2019; 103 (8): 1556–67. DOI: https://doi.org/10.1097/TP.0000000000002711

2. Lai X., Zheng X., Mathew J.M., Gallon L., Leventhal J.R., Zhang Z.J. Tackling chronic kidney transplant rejection: challenges and promises. Front Immunol. 2021; 12: 661–43. DOI: https://doi.org/10.3389/fimmu.2021.661643

3. Tamargo C.L., Kant S. Pathophysiology of rejection in kidney transplantation. J Clin Med. 2023; 12 (12): 4130. DOI: https://doi.org/10.3390/jcm12124130

4. Kozlov I.B., Vatazin A.V., Kildushevsky A.V., Zulkarnaev A.B., Fedulkina V.A., Faenko A.P., Yazdovsky V.V., Gudima G.O., Kofiadi I.A. Analysis of expression of immune system genes that are responsible for activation and inhibition of T-cell immune response in renal transplant recipients after extracorporeal photochemo-therapy. Immunologiya. 2020; 41 (1): 20–30. DOI: https://doi.org/10.33029/0206-4952-2020-41-1-20-30 (in Russian)

5. Marcén R. Immunosuppressive drugs in kidney transplantation: impact on patient survival, and incidence of cardiovascular disease, malignancy and infection. Drugs. 2009; 69 (16): 2227–43. DOI: https://doi.org/10.2165/11319260-000000000-00000

6. Sellarés J., de Freitas D.G., Mengel M., Reeve J., Einecke G., Sis B., Hidalgo L.G., Famulski K., Matas A., Halloran P.F. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012; 12 (2): 388–99. DOI: https://doi.org/10.1111/j.1600-6143.2011.03840.x

7. Graves S.S., Mathes D.W., Storb R. Induction of tolerance towards solid organ allografts using hematopoietic cell transplantation in large animal models. OBM Transplant. 2019; 3 (3): 24. DOI: https://doi.org/10.21926/obm.transplant.1903080

8. Thus K.A., de Weger R.A., de Hoop T.A., Boers Trilles V.E., Kuball J., Spierings E. Complete donor chimerism is a prerequisite for the effect of Predicted Indirectly ReCognizable HLA Epitopes (PIRCHE) on acute graft-versus-host disease. Chimerism. 2014; 5 (3-4): 94–8. DOI: https://doi.org/10.1080/19381956.2015.1097025

9. Scandling J.D., Busque S., Lowsky R., Shizuru J., Shori A., Engleman E., Jensen K., Strober S. Macrochimerism and clinical transplant tolerance. Hum Immunol. 2018; 79 (5): 266–71. DOI: https://doi.org/10.1016/j.humimm.2018.01.002

10. Watts K.L., Beard B.C., Wood B.L., Kiem H.P. Myeloablative irradiation in non-human primates. J Med Primatol. 2009; 38 (6): 425–32. DOI: https://doi.org/10.1111/j.1600-0684.2009.00368.x

11. Dey B., Sykes M., Spitzer T.R. Outcomes of recipients of both bone marrow and solid organ transplants. A review. Medicine (Baltimore). 1998; 77 (5): 355–69. DOI: https://doi.org/10.1097/00005792-199809000-00005

12. Storb R., Deeg H.J., Raff R., Schuening F., Yu C., Sandmaier B.M., Graham T. Prevention of graft-versus-host disease. Studies in a canine model. Ann N Y Acad Sci. 1995; 770: 149–64. DOI: https://doi.org/10.1111/j.1749-6632.1995.tb31052.x

13. Huang C.A., Fuchimoto Y., Scheier-Dolberg R., Murphy M.C., Neville D.M.J., Sachs D.H. Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model. J Clin Invest. 2000; 105 (2): 173–81. DOI: https://doi.org/10.1172/JCI7913

14. Pilat N., Wekerle T. Transplantation tolerance through mixed chimerism. Nat Rev Nephrol. 2010; 6 (10): 594–605. DOI: https://doi.org/10.1038/nrneph.2010.110

15. Chandrasekaran D., Nakamoto B., Watts K.L., Kiem H.P., Papayannopoulou T. Modeling promising nonmyeloablative conditioning regimens in nonhuman primates. Hum Gene Ther. 2014; 25 (12): 1013–22. DOI: https://doi.org/10.1089/hum.2014.031

16. Prise K.M., Schettino G., Folkard M. Held K.D. New insights on cell death from radiation exposure. Lancet Oncol. 2005; 6 (7): 520–8. DOI: https://doi.org/10.1016/S1470-2045(05)70246-1

17. Kawai T., Sachs D.H. Tolerance induction: hematopoietic chimerism. Curr Opin Organ Transplant. 2013; 18 (4): 402–7. DOI: https://doi.org/10.1097/MOT.0b013e328363621d

18. Kabore M.D., McElrath C.C., Ali M.A.E, Almengo K., Gangaplara A., Fisher C., Barreto M.A., Shaikh A., Olkhanud P.B., Xu X., Gaskin D., Lopez-Ocasio M., Saxena A., McCoy J.P., Fitzhugh C.D. Low dose post-transplant cyclophosphamide and sirolimus induce mixed chimerism with CTLA4-Ig or lymphocyte depletion in an MHC-mismatched murine allotransplantation model. Bone Marrow Transplant. 2024; 59 (5): 615–24. DOI: https://doi.org/10.1038/s41409-024-02237-y

19. DeFilipp Z., Hefazi M., Chen Y.B., Blazar B.R. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for nonmalignant diseases. Blood. 2022; 139 (25): 3583–93. DOI: https://doi.org/10.1182/blood.2020009014

20. Kawai T., Cosimi A.B., Sachs D.H. Preclinical and clinical studies on the induction of renal allograft tolerance through transient mixed chimerism. Curr Opin Organ Transplant. 2011; 16 (4): 366–71. DOI: https://doi.org/10.1097/MOT.0b013e3283484b2c

21. Kawai T., Leventhal J., Wood K., Strober S. Summary of the Third International Workshop on Clinical Tolerance. Am J Transplant. 2019; 19 (2): 324–30. DOI: https://doi.org/10.1111/ajt.15086

22. Kawai T., Cosimi A.B., Spitzer T.R., Tolkoff-Rubin N., Suthanthiran M., Saidman S.L., Shaffer J., Preffer F.I., Ding R., Sharma V., Fishman J.A., Dey B., Ko D.S., Hertl M., Goes N.B., Wong W., Williams W.W. Jr., Colvin R.B., Sykes M., Sachs D.H. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008; 358 (4): 353–61. DOI: https://doi.org/10.1056/NEJMoa071074

23. Millan M.T., Shizuru J.A., Hoffmann P., Dejbakhsh-Jones S., Scandling J.D., Grumet F.C., Tan J.C., Salvatierra O., Hoppe R.T., Strober S. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation. 2002; 73 (9): 1386–91. DOI: https://doi.org/10.1097/00007890-200205150-00005

24. Matar A.J., Sachs D.H., Duran-Struuck R. The MHC-characterized miniature swine: lessons learned from a 40-year experience in transplantation. Transplantation. 2022; 106 (5): 928–37. DOI: https://doi.org/10.1097/TP.0000000000003977

25. Fradelizi D., Mahouy G., de Riberolles C., Lecompte Y., Alhomme P., Douard M.C., Chotin G., Martelli H., Daburon F., Vaiman M. Allograft tolerance in pigs after fractionated lymphoid irradiation. II. Kidney graft after conventional total lymphoid irradiation and bone marrow cell grafting. Transplantation. 1981; 31 (5): 365–8. DOI: https://doi.org/10.1097/00007890-198105010-00012

26. Smith C.V., Nakajima K., Mixon A., Guzzetta P.C., Rosengard B.R., Fishbein J.M., Sachs D.H. Successful induction of long-term specific tolerance to fully allogeneic renal allografts in miniature swine. Transplantation. 1992; 53 (2): 438–44. DOI: https://doi.org/10.1097/00007890-199202010-00033

27. Guzzetta P.C., Sundt T.M., Suzuki T., Mixon A., Rosengard B.R., Sachs D.H. Induction of kidney transplantation tolerance across major histocompatibility complex barriers by bone marrow transplantation in miniature swine. Transplantation. 1991; 51 (4): 862–66. DOI: https://doi.org/10.1097/00007890-199104000-00024

28. Popitz-Bergez F.A., Sakamoto K., Pennington L.R., Pescovitz M.D., McDonough M.A., MacVittie T.J., Gress R.E., Sachs D.H. Bone marrow transplantation in miniature swine. II. Effect of selective genetic differences on marrow engraftment and recipient survival. Transplantation. 1988; 45 (1): 27–31.

29. Duran-Struuck R., Huang C.A., Matar A.J. Cellular Therapies for the treatment of hematological malignancies; swine are an ideal preclinical model. Front Oncol. 2019; 9: 418. DOI: https://doi.org/10.3389/fonc.2019.00418

30. Huang C.A., Yamada K., Murphy M.C., Shimizu A., Colvin R.B., Neville D.M. Jr., Sachs D.H. In vivo T cell depletion in miniature swine using the swine CD3 immunotoxin, pCD3-CRM9. Transplantation. 1999; 68 (6): 855–60. DOI: https://doi.org/10.1097/00007890-199909270-00019

31. Wang Z., Duran-Struuck R., Crepeau R., Matar A., Hanekamp I., Srinivasan S., Neville D.M. Jr, Sachs D.H., Huang C.A. Development of a diphtheria toxin based antiporcine CD3 recombinant immunotoxin. Bioconjug Chem. 2011; 22 (10): 2014–20. DOI: https://doi.org/10.1021/bc200230h

32. Merl S., Chen B., Gunes M.E., Atta H., Yang K., Ekanayake-Alper D., Hajosi D., Huang F., Bhola B., Patwardhan S., Jordache P., Nowak G., Martinez M., Kato T., Sykes M., Yamada K., Weiner J. Development of a large animal orthotopic intestinal transplantation model with long-term survival for study of immunologic outcomes. Front Transplant. 2024; 3: 1367486. DOI: https://doi.org/10.3389/frtra.2024.1367486

33. Horner B.M., Cina R.A., Wikiel K.J., Lima B., Ghazi A., Lo D.P., Yamada K., Sachs D.H., Huang C.A. Predictors of organ allograft tolerance following hematopoietic cell transplantation. Am J Transplant. 2006; 6 (12): 2894–902. DOI: https://doi.org/10.1111/j.1600-6143.2006.01563.x

34. Hettiaratchy S., Melendy E., Randolph M.A., Coburn R.C., Neville D.M. Jr, Sachs D.H., Huang C.A., Lee W.P. Tolerance to composite tissue allografts across a major histocompatibility barrier in miniature swine. Transplantation. 2004; 77 (4): 514–21. DOI: https://doi.org/10.1097/01.tp.0000113806.52063.42

35. Leonard D.A., Kurtz J.M., Mallard C., Albritton A., Duran-Struuck R., Farkash E.A., Crepeau R., Matar A., Horner B.M., Randolph M.A., Sachs D.H., Huang C.A., Cetrulo CL Jr. Vascularized composite allograft tolerance across MHC barriers in a large animal model. Am J Transplant. 2014; 14 (2): 343–55. DOI: https://doi.org/10.1111/ajt.12560

36. Mathes D.W., Randolph M.A., Solari M.G., Nazzal J.A., Nielsen G.P., Arn J.S., Sachs D.H., Lee W.P. Split tolerance to a composite tissue allograft in a swine model. Transplantation. 2003; 75 (1): 25–31. DOI: https://doi.org/10.1097/00007890-200301150-00005

37. Kawai T., Sachs D.H., Sprangers B., Spitzer T.R., Saidman S.L., Zorn E., Tolkoff-Rubin N., Preffer F., Crisalli K., Gao B., Wong W., Morris H., LoCascio S.A., Sayre P., Shonts B., Williams W.W. Jr, Smith R.N., Colvin R.B., Sykes M., Cosimi A.B. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant. 2014; 14 (7): 1599–611. DOI: https://doi.org/10.1111/ajt.12731

38. Lellouch A.G., Andrews A.R., Saviane G., Ng Z.Y., Schol I.M., Goutard M., Gama A.R., Rosales I.A., Colvin R.B., Lantieri L.A., Randolph M.A., Benichou G., Cetrulo C.L. Jr. Tolerance of a vascularized composite allograft achieved in MHC Class-I-mismatch swine via mixed chimerism. Front Immunol. 2022; 13: 829406. DOI: https://doi.org/10.3389/fimmu.2022.829406

39. Grinko E.K., Donetskova A.D., Varlachev A.V., Mitin A.N. The role of costimulation blockade in transplantology: from experiment to clinic. Immunologiya. 2023; 44 (5): 626–39. DOI: https://doi.org/10.33029/0206-4952-2023-44-5-626-639 (in Russian)

40. Zhang W., Wang Y., Zhong F., Wang X., Sucher R., Lin C.H., Brandacher G., Solari M.G., Gorantla V.S., Zheng X.X. Donor derived hematopoietic stem cell niche transplantation facilitates mixed chimerism mediated donor specific tolerance. Front Immunol. 2023; 14: 1093302. DOI: https://doi.org/10.3389/fimmu.2023.1093302

41. Yamada Y., Ochiai T., Boskovic S., Nadazdin O., Oura T., Schoenfeld D., Cappetta K., Smith R.N., Colvin R.B., Madsen J.C., Sachs D.H., Benichou G., Cosimi A.B., Kawai T. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Am J Transplant. 2014; 14 (12): 2704–12. DOI: https://doi.org/10.1111/ajt.12936

42. Kawai T., Poncelet A., Sachs D.H., Mauiyyedi S., Boskovic S., Wee S.L., Ko D.S., Bartholomew A., Kimikawa M., Hong H.Z., Abrahamian G., Colvin R.B., Cosimi A.B. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation. 1999; 68 (11): 1767–75. DOI: https://doi.org/10.1097/00007890-199912150-00022

43. Pinelli D.F., Ford M.L. Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance. Immunotherapy. 2015; 7 (4): 399–410. DOI: https://doi.org/10.2217/imt.15.1

44. Ferrer I.R., Wagener M.E., Song M., Kirk A.D., Larsen C.P., Ford M.L. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci USA. 2011; 108 (51): 20701–6. DOI: https://doi.org/10.1073/pnas.1105500108

45. Kawai T., Sogawa H., Boskovic S., Abrahamian G., Smith R.N., Wee S.L., Andrews D., Nadazdin O., Koyama I., Sykes M., Winn H.J., Colvin R.B., Sachs D.H., Cosimi A.B. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant. 2004; 4 (9): 1391–8. DOI: https://doi.org/10.1111/j.1600-6143.2004.00523.x

46. Langer F., Ingersoll S.B., Amirkhosravi A., Meyer T., Siddiqui F.A., Ahmad S., Walker J.M., Amaya M., Desai H., Francis J.L. The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb Haemost. 2005; 93 (6): 1137–46. DOI: https://doi.org/10.1160/TH04-12-0774

47. Pilat N., Granofszky N., Wekerle T. Combining adoptive Treg transfer with bone marrow transplantation for transplantation tolerance. Curr Transplant Rep. 2017; 4 (4): 253–61. DOI: https://doi.org/10.1007/s40472-017-0164-7

48. Sasaki H., Oura T., Spitzer T.R., Chen Y.B., Madsen J.C., Allan J., Sachs D.H., Cosimi A.B., Kawai T. Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Hum Immunol. 2018; 79 (5): 258–65. DOI: https://doi.org/10.1016/j.humimm.2017.11.008

49. Busque S., Scandling J.D., Lowsky R., Shizuru J., Jensen K., Waters J., Wu H.H., Sheehan K., Shori A., Choi O., Pham T., Fernandez Vina M.A., Hoppe R., Tamaresis J., Lavori P., Engleman E.G., Meyer E., Strober S. Mixed chimerism and acceptance of kidney transplants after immunosuppressive drug withdrawal. Sci Transl Med. 2020; 12 (528): eaax8863. DOI: https://doi.org/10.1126/scitranslmed.aax8863

50. Lowsky R., Strober S. Combined kidney and hematopoeitic cell transplantation to induce mixed chimerism and tolerance. Bone Marrow Transplant. 2019; 54 (Suppl 2): 793–7. DOI: https://doi.org/10.1038/s41409-019-0603-4

51. McCutchen K.W., Watkins J.M., Eberts P., Terwilliger L.E., Ashenafi M.S., Jenrette J.M. 3rd. Helical tomotherapy for total lymphoid irradiation. Radiat. Med. 2008; 26 (10): 622–6. DOI: https://doi.org/10.1007/s11604-008-0281-4

52. Kaufman D.B., Forrest L.J., Fechner J., Post J., Coonen J., Haynes L.D., et al. Helical tomotherapy total lymphoid irradiation and hematopoietic cell transplantation for kidney transplant tolerance in rhesus macaques. Transpl Int. 2023; 36: 11279. DOI: https://doi.org/10.3389/ti.2023.11279

53. Oura T., Hotta K., Cosimi A.B., Kawai T. Transient mixed chimerism for allograft tolerance. Chimerism. 2015; 6 (1-2): 21–6. DOI: https://doi.org/10.1080/19381956.2015.1111975

54. Little C.J., Kim S.C., Fechner J.H., Post J., Coonen J., Chlebeck P., Winslow M., et al. Early allogeneic immune modulation after establishment of donor hematopoietic cell-induced mixed chimerism in a nonhuman primate kidney transplant model. Front Immunol. 2024; 15: 1343616. DOI: https://doi.org/10.3389/fimmu.2024.1343616

55. Cippà P.E., Gabriel S.S., Chen J., Bardwell P.D., Bushell A., Guimezanes A., Kraus A.K., Wekerle T., Wüthrich R.P., Fehr T. Targeting apoptosis to induce stable mixed hematopoietic chimerism and long-term allograft survival without myelosuppressive conditioning in mice. Blood. 2013; 122 (9): 1669–77. DOI: https://doi.org/10.1182/blood-2012-09-453944

56. Carrington E.M., Zhan Y., Brady J.L., Zhang J.G., Sutherland R.M., et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ. 2017; 24 (5): 878–88. DOI: https://doi.org/10.1038/cdd.2017.30

57. Jiao Y., Davis J.E., Rautela J., Carrington E.M., Ludford-Menting M.J., Goh W., et al. Recipient BCL2 inhibition and NK cell ablation form part of a reduced intensity conditioning regime that improves allo-bone marrow transplantation outcomes. Cell Death Differ. 2019; 26 (8): 1516–30. DOI: https://doi.org/10.1038/s41418-018-0228-y

58. Patel P.M., Hirose T., et al. Using selective Bcl2 inhibition to induce cardiac allograft tolerance. The Journal of Heart and Lung Transplantation 2021; 40 (4): S30–S31.

59. Sasaki H., Hirose T., Oura T., Otsuka R., Rosales I., Ma D., et al. Selective Bcl-2 inhibition promotes hematopoietic chimerism and allograft tolerance without myelosuppression in nonhuman primates. Sci Transl Med. 2023; 15 (690): eadd5318. DOI: https://doi.org/10.1126/scitranslmed.add5318

60. Miller C.L., Dehnadi A., et al. Use of Anti-Il-6 or Anti-IL-6r therapy in a mixed chimerism protocol to achieve heart allograft tolerance in non-human primates. The Journal of Heart and Lung Transplantation. 2023; 42 (4): S171.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»