To the content
2 . 2025

Production of detoxified lipopolysaccharide derivatives and their applications as vaccine and adjuvant preparations

Abstract

Introduction. Due to the spread of antibiotic resistance, the search for new antibacterial vaccines and adjuvants becomes relevant. One of the promising directions is the creation of immunotropic drugs based on lipopolysaccharide (LPS) of gram-negative bacteria, which is a powerful immunostimulant and leads to the production of protective antibodies. However, the clinical use of LPS is limited by its extremely high toxicity, which can be reduced by modifying the structure of lipid A. Currently, detoxified LPS (d-LPS) and lipids A (d-LA) have been obtained, which are widely used in vaccine preparations: d-LPS – as an active substance, d-LA – as an adjuvant. In addition, the possibility of using d-LPS and d-LA as built-in adjuvants is being studied.

Structure and biological activity of LPS of gram-negative bacteria. LPS is composed of three different fragments – lipid A, core oligosaccharide and O-specific polysaccharide. The carbohydrate part of LPS provides serological specificity of different strains, lipid A activates the TLR4/MD-2 complex located on the surface of immunocompetent cells. The biological activity of lipid A is closely related to its structure: with a decrease in the number of fatty acid residues and phosphate groups, the toxicity of LPS is reduced. Thus, the classic, highly toxic lipid A of E. coli is composed of two glucosamine residues, to which 6 fatty acid residues and 2 phosphate groups are attached.

Methods for obtaining detoxified lipids A. Obtaining d-LA involves two steps – reduction of the number of fatty acid residues while retaining both phosphate groups or removal of the phosphate group while retaining the fatty acid composition. Both approaches have been successfully implemented to produce clinically applicable d-LA, OM-174 (d-LA with 3 fatty acid residues and 2 phosphate groups) and MPL (d-LA with 6 fatty acid residues and 1 phosphate group).

Methods for obtaining detoxified LPS. Obtaining d-LPS also involves removing fatty acid residues or phosphate groups by various approaches – chemical, enzymatic and genetic engineering.

Conclusion. Thus, preparations based on d-LPS and d-LA are a promising platform for the creation of new, highly immunogenic antibacterial vaccines and other immunotropic drugs. Since the production of these compounds is associated with a number of disadvantages (duration, high cost, toxicity of the reagents used), the development of new methods for obtaining d-LPS and d-LA becomes relevant.

Keywords: lipopolysaccharide; lipid A; detoxification; vaccines; adjuvants

For citation: Savin A.P., Smirnov V.V., Filatov A.V., Lvov V.L., Gudima G.O., Khaitov M.R. Production of detoxified lipopolysaccharide derivatives and their applications as vaccine and adjuvant preparations. Immunologiya. 2025; 46 (2): 243–54. DOI: https://doi.org/10.33029/1816-2134-2025-46-2-243-254 (in Russian)

Funding. The study was performed within the framework of the State assignment «Personalized Oncopreparation», R&D state registration number 124031200002-3 with the financial support of the Federal Medical and Biological Agency. Publication of the research results in the open press is allowed.

Conflict of interests. Authors declare no conflict of interests.

Authors' contributions. Concept and design of the study – Savin A.P.; literature search and analysis – Savin A.P., Filatov A.V., Lvov V.L.; figures design – Savin A.P.; writing the article – Savin A.P., Filatov A.V., Lvov V.L.; proofreading the article – Smirnov V.V., Gudima G.O., Khaitov M.R. All authors contributed to the editing of the article and approved the final version.

References

1. Church N.A., McKillip, J.L. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021; 76: 1535–5. DOI: https://doi.org/10.1007/s11756-021-00697-x

2. Rohokale R., Guo Z. Development in the concept of bacterial polysaccharide repeating unit-based antibacterial conjugate vaccines. ACS Infect Dis. 2023; 9 (2): 178–212. DOI: https://doi.org/10.1021/acsinfecdis.2c00559

3. Frasch C.E. Preparation of bacterial polysaccharide-protein conjugates: analytical and manufacturing challenges. Vaccine. 2009; 27 (46): 6468–70. DOI: https://doi.org/10.1016/j.vaccine.2009.06.013

4. Costantino P., Rappuoli R., Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov. 201; 6 (10): 1045–66. DOI: https://doi.org/10.1517/17460441.2011.609554

5. Zhao T., Cai Y., Jiang Y., He X., Wei Y., Yu Y., Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023; 8 (1): 283. DOI: https://doi.org/10.1038/s41392-023-01557-7

6. Andreev Yu.Yu., Toptygina A.P. Adjuvants and immunomodulators in vaccines. Immunologiya. 2021; 42 (6): 720–9. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-720-729 (in Russian)

7. Rietschel E.T., Brade H., Holst O., Brade L., Müller-Loennies S., Mamat U., Zähringer U., Beckmann F., Seydel U., Brandenburg K., Ulmer A.J., Mattern T., Heine H., Schletter J., Loppnow H., Schönbeck U., Flad H.D., Hauschildt S., Schade U.F., Di Padova F., Kusumoto S., Schumann R.R. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol. 1996; 216: 39–81. DOI: https://doi.org/10.1007/978-3-642-80186-0-3

8. Robbins J.B., Schneerson R., Szu S.C. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis. 1995; 171 (6): 1387–98. DOI: https://doi.org/10.1093/infdis/171.6.1387

9. Zielen S., Trischler J., Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol. 2015; 11 (3): 409–18. DOI: https://doi.org/10.1586/1744666X.2015.1012158

10. Molinaro A., Holst O., Di Lorenzo F., Callaghan M., Nurisso A., D'Errico G., Zamyatina A., Peri F., Berisio R., Jerala R., Jiménez-Barbero J., Silipo A., Martín-Santamaría S. Chemistry of lipid A: at the heart of innate immunity. Chemistry. 2015; 21 (2): 500–19. DOI: https://doi.org/10.1002/chem.201403923

11. Li Q., Li Z., Deng N., Ding F., Li Y., Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022; 227: 113917. DOI: https://doi.org/10.1016/j.ejmech.2021.113917

12. Taleghani N., Bozorg A., Azimi A., Zamani H. Immunogenicity of HPV and HBV vaccines: adjuvanticity of synthetic analogs of monophosphoryl lipid A combined with aluminum hydroxide. APMIS. 2019; 127 (3): 150–7. DOI: https://doi.org/10.1111/apm.12927

13. Abramtseva M.V., Nemanova E.O., Alekhina N.S. Promising directions for vaccine development to prevent shigellosis. Biological Products. Prevention, Diagnosis, Treatment. 2022; 22 (3): 249–65. DOI: https://doi.org/10.30895/2221-996X-2022-22-3-249-265

14. Novikova E.M., Kozyreva O.V., Razvalyayeva N.A., Chu­khina E.S., Golovina M.E., L'vov V.L., Aparin P.G., Stepanenko R.N. Antitumor activity of ligands of Toll-like receptors of bacteria Shigella sonnei. Immunologiya. 2023; 44 (2): 167–80. DOI: https://doi.org/10.33029/0206-4952-2023-44-2-167-180 (in Russian)

15. Novikova E.M., Chukhina E.S., Razvalyayeva N.A., Kozyreva O.V., Golovina M.E., L'vov V.L., Aparin P.G., Stepanenko R.N. Effect of detoxified Shigella sonnei lipopolysaccharide on the expression of tumor-associated antigen gp100 and MHC I antigens by B16 melanoma cells. Immunologiya. 2024; 45 (1): 68–81. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-68-81 (in Russian)

16. Vaure C., Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014; 5: 316. DOI: https://doi.org/10.3389/fimmu.2014.00316

17. Rollenske T., Szijarto V., Lukasiewicz J., Guachalla L.M., Stoj­kovic K., Hartl K., Stulik L., Kocher S., Lasitschka F., Al-Saeedi M., Schröder-Braunstein J., von Frankenberg M., Gaebelein G., Hoffmann P., Klein S., Heeg K., Nagy E., Nagy G., Wardemann H. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat Immunol. 2018; 19 (6): 617–24. DOI: https://doi.org/10.1038/s41590-018-0106-2

18. Liu B., Furevi A., Perepelov A.V., Guo X., Cao H., Wang Q., Reeves P.R., Knirel Y.A., Wang L., Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev. 2020; 44 (6): 655–83. DOI: https://doi.org/10.1093/femsre/fuz028

19. Gorman A., Golovanov A.P. lipopolysaccharide structure and the phenomenon of low endotoxin recovery. Eur J Pharm Biopharm. 2022; 180: 289–307. DOI: https://doi.org/10.1016/j.ejpb.2022.10.006

20. Garcia-Vello P., Di Lorenzo F., Zucchetta D., Zamyatina A., De Castro C., Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther. 2022; 230: 107970. DOI: https://doi.org/10.1016/j.pharmthera.2021.107970

21. Caroff M., Novikov A. Lipopolysaccharides: structure, function and bacterial identification. Oil & Fats Crops and Lipids. 2020; 27: 31. DOI: https://doi.org/10.1051/ocl/2020025

22. Di Lorenzo F., Duda K.A., Lanzetta R., Silipo A., De Castro C., Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem Rev. 2022; 122 (20): 15767–821. DOI: https://doi.org/10.1021/acs.chemrev.0c01321

23. Westphal O., Jann K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 1965; 5: 83.

24. Darveau R.P., Hancock R.E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983; 155 (2): 831–8. DOI: https://doi.org/10.1128/jb.155.2.831-838.1983

25. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969; 9 (2): 245–9. DOI: https://doi.org/10.1111/j.1432-1033.1969.tb00601.x

26. Shi S., Zhu H., Xia X., Liang Z., Ma X., Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019; 37 (24): 3167–78. DOI: https://doi.org/10.1016/j.vaccine.2019.04.055

27. Charles Ph., Geldhof G., Mancuso V. LPS extraction process. U.S. Patent No. US9499639B2. November 22, 2016.

28. Charles Ph., Myers K.R., Snyder D.S. Methods for the production of 3-o-deactivated-4'-monophosphoryl lipid a (3D-MLA). WIPO (PCT) WO2002078637A2. 2002.

29. Pieretti G., Cipolletti M., D'Alonzo D., Alfano A., Cimini D., Cammarota M., Palumbo G., Giuliano M., De Rosa M., Schiraldi C., Parrilli M., Bedini E., Corsaro M.M. A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Appl Microbiol Biotechnol. 2014; 98 (18): 7781–91. DOI: https://doi.org/10.1007/s00253-014-5865-6

30. Chen J., Tao G., Wang X. Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnol Lett. 2011; 33 (5): 1013–9. DOI: https://doi.org/10.1007/s10529-011-0521-z

31. Ji Y., An J., Hwang D., Ha D.H., Lim S.M., Lee C., Zhao J., Song H.K., Yang E.G., Zhou P., Chung H.S. Metabolic engineering of Esche­richia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng. 2020; 57: 193–202. DOI: https://doi.org/10.1016/j.ymben.2019.11.009

32.Wang Y.Q., Bazin-Lee H., Evans J.T., Casella C.R., Mitchell T.C. MPL adjuvant contains competitive antagonists of human TLR4. Front Immunol. 2020; 11: 577823. DOI: https://doi.org/10.3389/fimmu.2020.577823

33. European Pharmacopoeia. 10th edition. Strasbourg: EDQM, 2019.

34. Liao G., Zhou Z., Suryawanshi S., Mondal M.A., Guo Z. Fully synthetic self-adjuvanting α-2,9-oligosialic acid based conjugate vaccines against group C meningitis. ACS Cent Sci. 2016; 2 (4): 210–8. DOI: https://doi.org/10.1021/acscentsci.5b00364

35. Tommassen J.P.M., Van Der Ley P.A., Geurtsen J.J.G. Glucosamine disaccharides, method for their preparation, pharmaceutical composition comprising same, and their use. WIPO (PCT) Patent WO1995014026A1. May 26, 2006.

36. Moutel S., Bauer J., Chiavarolil C., inventors; OM Pharma SA, assignee. Functionalized beta 1,6 glucosamine disaccharides and process for their preparation. WIPO (PCT) WO2008059307A2. May 22, 2008.

37. Davies J.G., Bauer J., Hirt P., Schulthess A., inventors; NVI Nederlands Vaccininstituut, assignee. Deacylation of LPS in gram negative bacteria. WIPO (PCT) Patent WO2006065139A2. June 22, 1995.

38. Apicella M.A., Sunshine M.G., Lee N.-G., Arumugham R., Gibson B.W., inventors; University of Iowa Research Foundation, assignee. Non-Toxic Mutants of Pathogenic Gram-Negative Bacteria. WIPO (PCT) Patent WO1997019688. June 5, 1997.

39. Pupo E., Hamstra H.J., Meiring H., van der Ley P. Lipopolysaccharide engineering in Neisseria meningitidis: structural analysis of different pentaacyl lipid A mutants and comparison of their modified agonist properties. J Biol Chem. 2014; 289 (12): 8668–80. DOI: https://doi.org/10.1074/jbc.M114.554345

40. Munford R.S., Hall C.L., inventors; Board of Regents, The University of Texas System, assignee. Lipopolysaccharides of reduced toxicity and the production thereof. U.S. Patent No. US4929604A. May 29, 1990.

41. Ledov V.A., Golovina M.E., Alkhazova B.I., Lvov V.L., Kovalchuk A.L., Aparin P.G. A Pentavalent Shigella flexneri LPS-based vaccine candidate is safe and immunogenic in animal models. Vaccines (Basel). 2023; 11 (2): 345. DOI: https://doi.org/10.3390/vaccines11020345

42.  Ledov V.A., Golovina M.E., Markina A.A., Knirel Y.A., L'vov V.L., Kovalchuk A.L., Aparin P.G. Highly homogenous tri-acylated S-LPS acts as a novel clinically applicable vaccine against Shigella flexneri 2a infection. Vaccine. 2019; 37 (8): 1062–72. DOI: https://doi.org/10.1016/j.vaccine.2018.12.067

43.  Dyatlov I.A., Svetoch E.A., Mironenko A.A., Eruslanov B.V., Firstova V.V., Fursova N.K., Kovalchuk A.L., Lvov V.L., Aparin P.G. Molecular lipopolysaccharide Di-Vaccine protects from Shiga-Toxin producing epidemic strains of Escherichia coli O157:H7 and O104:H4. Vaccines (Basel). 2022; 10 (11): 1854. DOI: https://doi.org/10.3390/vaccines10111854

44. Zariri A., Pupo E., van Riet E., van Putten J.P., van der Ley P. Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Sci Rep. 2016; 6: 36575. DOI: https://doi.org/10.1038/srep36575

45. Bates J.M., Akerlund J., Mittge E., Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007; 2 (6): 371–82. DOI: https://doi.org/10.1016/j.chom.2007.10.010

46. Phillips N.J., Adin D.M., Stabb E.V., McFall-Ngai M.J., Apicella M.A., Gibson B.W. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem. 2011; 286 (24): 21203–19. DOI: https://doi.org/10.1074/jbc.M111.239475

47. Silva A.R.M., Alexandre J.Y.N.H., Souza J.E.S., Neto J.G.L., de Sousa Júnior P.G., Rocha M.V.P., Dos Santos J.C.S. The chemistry and applications of Metal-Organic Frameworks (MOFs) as industrial enzyme immobilization systems. Molecules. 2022; 27 (14): 4529. DOI: https://doi.org/10.3390/molecules27144529

48. Le H., Vishwanathan N., Jacob NM., Gadgil M., Hu W.S. Cell line development for biomanufacturing processes: recent advances and an outlook. Biotechnol Lett. 2015; 37 (8): 1553–64. DOI: https://doi.org/10.1007/s10529-015-1843-z

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»