References
1. Church N.A., McKillip, J.L. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021; 76: 1535–5. DOI: https://doi.org/10.1007/s11756-021-00697-x
2. Rohokale R., Guo Z. Development in the concept of bacterial polysaccharide repeating unit-based antibacterial conjugate vaccines. ACS Infect Dis. 2023; 9 (2): 178–212. DOI: https://doi.org/10.1021/acsinfecdis.2c00559
3. Frasch C.E. Preparation of bacterial polysaccharide-protein conjugates: analytical and manufacturing challenges. Vaccine. 2009; 27 (46): 6468–70. DOI: https://doi.org/10.1016/j.vaccine.2009.06.013
4. Costantino P., Rappuoli R., Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov. 201; 6 (10): 1045–66. DOI: https://doi.org/10.1517/17460441.2011.609554
5. Zhao T., Cai Y., Jiang Y., He X., Wei Y., Yu Y., Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023; 8 (1): 283. DOI: https://doi.org/10.1038/s41392-023-01557-7
6. Andreev Yu.Yu., Toptygina A.P. Adjuvants and immunomodulators in vaccines. Immunologiya. 2021; 42 (6): 720–9. DOI: https://doi.org/10.33029/0206-4952-2021-42-6-720-729 (in Russian)
7. Rietschel E.T., Brade H., Holst O., Brade L., Müller-Loennies S., Mamat U., Zähringer U., Beckmann F., Seydel U., Brandenburg K., Ulmer A.J., Mattern T., Heine H., Schletter J., Loppnow H., Schönbeck U., Flad H.D., Hauschildt S., Schade U.F., Di Padova F., Kusumoto S., Schumann R.R. Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol. 1996; 216: 39–81. DOI: https://doi.org/10.1007/978-3-642-80186-0-3
8. Robbins J.B., Schneerson R., Szu S.C. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis. 1995; 171 (6): 1387–98. DOI: https://doi.org/10.1093/infdis/171.6.1387
9. Zielen S., Trischler J., Schubert R. Lipopolysaccharide challenge: immunological effects and safety in humans. Expert Rev Clin Immunol. 2015; 11 (3): 409–18. DOI: https://doi.org/10.1586/1744666X.2015.1012158
10. Molinaro A., Holst O., Di Lorenzo F., Callaghan M., Nurisso A., D'Errico G., Zamyatina A., Peri F., Berisio R., Jerala R., Jiménez-Barbero J., Silipo A., Martín-Santamaría S. Chemistry of lipid A: at the heart of innate immunity. Chemistry. 2015; 21 (2): 500–19. DOI: https://doi.org/10.1002/chem.201403923
11. Li Q., Li Z., Deng N., Ding F., Li Y., Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022; 227: 113917. DOI: https://doi.org/10.1016/j.ejmech.2021.113917
12. Taleghani N., Bozorg A., Azimi A., Zamani H. Immunogenicity of HPV and HBV vaccines: adjuvanticity of synthetic analogs of monophosphoryl lipid A combined with aluminum hydroxide. APMIS. 2019; 127 (3): 150–7. DOI: https://doi.org/10.1111/apm.12927
13. Abramtseva M.V., Nemanova E.O., Alekhina N.S. Promising directions for vaccine development to prevent shigellosis. Biological Products. Prevention, Diagnosis, Treatment. 2022; 22 (3): 249–65. DOI: https://doi.org/10.30895/2221-996X-2022-22-3-249-265
14. Novikova E.M., Kozyreva O.V., Razvalyayeva N.A., Chukhina E.S., Golovina M.E., L'vov V.L., Aparin P.G., Stepanenko R.N. Antitumor activity of ligands of Toll-like receptors of bacteria Shigella sonnei. Immunologiya. 2023; 44 (2): 167–80. DOI: https://doi.org/10.33029/0206-4952-2023-44-2-167-180 (in Russian)
15. Novikova E.M., Chukhina E.S., Razvalyayeva N.A., Kozyreva O.V., Golovina M.E., L'vov V.L., Aparin P.G., Stepanenko R.N. Effect of detoxified Shigella sonnei lipopolysaccharide on the expression of tumor-associated antigen gp100 and MHC I antigens by B16 melanoma cells. Immunologiya. 2024; 45 (1): 68–81. DOI: https://doi.org/10.33029/1816-2134-2024-45-1-68-81 (in Russian)
16. Vaure C., Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014; 5: 316. DOI: https://doi.org/10.3389/fimmu.2014.00316
17. Rollenske T., Szijarto V., Lukasiewicz J., Guachalla L.M., Stojkovic K., Hartl K., Stulik L., Kocher S., Lasitschka F., Al-Saeedi M., Schröder-Braunstein J., von Frankenberg M., Gaebelein G., Hoffmann P., Klein S., Heeg K., Nagy E., Nagy G., Wardemann H. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat Immunol. 2018; 19 (6): 617–24. DOI: https://doi.org/10.1038/s41590-018-0106-2
18. Liu B., Furevi A., Perepelov A.V., Guo X., Cao H., Wang Q., Reeves P.R., Knirel Y.A., Wang L., Widmalm G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol Rev. 2020; 44 (6): 655–83. DOI: https://doi.org/10.1093/femsre/fuz028
19. Gorman A., Golovanov A.P. lipopolysaccharide structure and the phenomenon of low endotoxin recovery. Eur J Pharm Biopharm. 2022; 180: 289–307. DOI: https://doi.org/10.1016/j.ejpb.2022.10.006
20. Garcia-Vello P., Di Lorenzo F., Zucchetta D., Zamyatina A., De Castro C., Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther. 2022; 230: 107970. DOI: https://doi.org/10.1016/j.pharmthera.2021.107970
21. Caroff M., Novikov A. Lipopolysaccharides: structure, function and bacterial identification. Oil & Fats Crops and Lipids. 2020; 27: 31. DOI: https://doi.org/10.1051/ocl/2020025
22. Di Lorenzo F., Duda K.A., Lanzetta R., Silipo A., De Castro C., Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem Rev. 2022; 122 (20): 15767–821. DOI: https://doi.org/10.1021/acs.chemrev.0c01321
23. Westphal O., Jann K. Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 1965; 5: 83.
24. Darveau R.P., Hancock R.E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983; 155 (2): 831–8. DOI: https://doi.org/10.1128/jb.155.2.831-838.1983
25. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969; 9 (2): 245–9. DOI: https://doi.org/10.1111/j.1432-1033.1969.tb00601.x
26. Shi S., Zhu H., Xia X., Liang Z., Ma X., Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019; 37 (24): 3167–78. DOI: https://doi.org/10.1016/j.vaccine.2019.04.055
27. Charles Ph., Geldhof G., Mancuso V. LPS extraction process. U.S. Patent No. US9499639B2. November 22, 2016.
28. Charles Ph., Myers K.R., Snyder D.S. Methods for the production of 3-o-deactivated-4'-monophosphoryl lipid a (3D-MLA). WIPO (PCT) WO2002078637A2. 2002.
29. Pieretti G., Cipolletti M., D'Alonzo D., Alfano A., Cimini D., Cammarota M., Palumbo G., Giuliano M., De Rosa M., Schiraldi C., Parrilli M., Bedini E., Corsaro M.M. A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Appl Microbiol Biotechnol. 2014; 98 (18): 7781–91. DOI: https://doi.org/10.1007/s00253-014-5865-6
30. Chen J., Tao G., Wang X. Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnol Lett. 2011; 33 (5): 1013–9. DOI: https://doi.org/10.1007/s10529-011-0521-z
31. Ji Y., An J., Hwang D., Ha D.H., Lim S.M., Lee C., Zhao J., Song H.K., Yang E.G., Zhou P., Chung H.S. Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng. 2020; 57: 193–202. DOI: https://doi.org/10.1016/j.ymben.2019.11.009
32. Wang Y.Q., Bazin-Lee H., Evans J.T., Casella C.R., Mitchell T.C. MPL adjuvant contains competitive antagonists of human TLR4. Front Immunol. 2020; 11: 577823. DOI: https://doi.org/10.3389/fimmu.2020.577823
33. European Pharmacopoeia. 10th edition. Strasbourg: EDQM, 2019.
34. Liao G., Zhou Z., Suryawanshi S., Mondal M.A., Guo Z. Fully synthetic self-adjuvanting α-2,9-oligosialic acid based conjugate vaccines against group C meningitis. ACS Cent Sci. 2016; 2 (4): 210–8. DOI: https://doi.org/10.1021/acscentsci.5b00364
35. Tommassen J.P.M., Van Der Ley P.A., Geurtsen J.J.G. Glucosamine disaccharides, method for their preparation, pharmaceutical composition comprising same, and their use. WIPO (PCT) Patent WO1995014026A1. May 26, 2006.
36. Moutel S., Bauer J., Chiavarolil C., inventors; OM Pharma SA, assignee. Functionalized beta 1,6 glucosamine disaccharides and process for their preparation. WIPO (PCT) WO2008059307A2. May 22, 2008.
37. Davies J.G., Bauer J., Hirt P., Schulthess A., inventors; NVI Nederlands Vaccininstituut, assignee. Deacylation of LPS in gram negative bacteria. WIPO (PCT) Patent WO2006065139A2. June 22, 1995.
38. Apicella M.A., Sunshine M.G., Lee N.-G., Arumugham R., Gibson B.W., inventors; University of Iowa Research Foundation, assignee. Non-Toxic Mutants of Pathogenic Gram-Negative Bacteria. WIPO (PCT) Patent WO1997019688. June 5, 1997.
39. Pupo E., Hamstra H.J., Meiring H., van der Ley P. Lipopolysaccharide engineering in Neisseria meningitidis: structural analysis of different pentaacyl lipid A mutants and comparison of their modified agonist properties. J Biol Chem. 2014; 289 (12): 8668–80. DOI: https://doi.org/10.1074/jbc.M114.554345
40. Munford R.S., Hall C.L., inventors; Board of Regents, The University of Texas System, assignee. Lipopolysaccharides of reduced toxicity and the production thereof. U.S. Patent No. US4929604A. May 29, 1990.
41. Ledov V.A., Golovina M.E., Alkhazova B.I., Lvov V.L., Kovalchuk A.L., Aparin P.G. A Pentavalent Shigella flexneri LPS-based vaccine candidate is safe and immunogenic in animal models. Vaccines (Basel). 2023; 11 (2): 345. DOI: https://doi.org/10.3390/vaccines11020345
42. Ledov V.A., Golovina M.E., Markina A.A., Knirel Y.A., L'vov V.L., Kovalchuk A.L., Aparin P.G. Highly homogenous tri-acylated S-LPS acts as a novel clinically applicable vaccine against Shigella flexneri 2a infection. Vaccine. 2019; 37 (8): 1062–72. DOI: https://doi.org/10.1016/j.vaccine.2018.12.067
43. Dyatlov I.A., Svetoch E.A., Mironenko A.A., Eruslanov B.V., Firstova V.V., Fursova N.K., Kovalchuk A.L., Lvov V.L., Aparin P.G. Molecular lipopolysaccharide Di-Vaccine protects from Shiga-Toxin producing epidemic strains of Escherichia coli O157:H7 and O104:H4. Vaccines (Basel). 2022; 10 (11): 1854. DOI: https://doi.org/10.3390/vaccines10111854
44. Zariri A., Pupo E., van Riet E., van Putten J.P., van der Ley P. Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Sci Rep. 2016; 6: 36575. DOI: https://doi.org/10.1038/srep36575
45. Bates J.M., Akerlund J., Mittge E., Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007; 2 (6): 371–82. DOI: https://doi.org/10.1016/j.chom.2007.10.010
46. Phillips N.J., Adin D.M., Stabb E.V., McFall-Ngai M.J., Apicella M.A., Gibson B.W. The lipid A from Vibrio fischeri lipopolysaccharide: a unique structure bearing a phosphoglycerol moiety. J Biol Chem. 2011; 286 (24): 21203–19. DOI: https://doi.org/10.1074/jbc.M111.239475
47. Silva A.R.M., Alexandre J.Y.N.H., Souza J.E.S., Neto J.G.L., de Sousa Júnior P.G., Rocha M.V.P., Dos Santos J.C.S. The chemistry and applications of Metal-Organic Frameworks (MOFs) as industrial enzyme immobilization systems. Molecules. 2022; 27 (14): 4529. DOI: https://doi.org/10.3390/molecules27144529
48. Le H., Vishwanathan N., Jacob NM., Gadgil M., Hu W.S. Cell line development for biomanufacturing processes: recent advances and an outlook. Biotechnol Lett. 2015; 37 (8): 1553–64. DOI: https://doi.org/10.1007/s10529-015-1843-z