Molecular-biological mechanisms of interconnection between hypoxia, inflammatory and immune reactions

Abstract

Abstract. The review is devoted to the molecular-biological mechanisms of the connection between hypoxia, inflammatory and immune processes, since it is known that lack of oxygen, on the one hand, can initiate the development of inflammation, and on the other, any inflammatory process, especially with severe systemic symptoms, is accompanied by lack of oxygen. The review provides current approaches to the connection between key transcription factor that is activated during hypoxia, HIF-1α, with the nuclear factor NF-κB, regulating inflammation. Literature data on the role in inflammation of HIF-1α activation in various types of cells and tissues, which can have both anti-inflammatory and pro-inflammatory effects, are generalized. The study of the connection between the molecular-biological mechanisms of inflammatory and immune responses and hypoxia is important not only for understanding the effects of HIF-1 on NF-κB, but also for creating potentially new therapeutic approaches to the treatment of inflammatory diseases and tumors, since HIF-1 plays an important role in their development.

Keywords:review; hypoxia; inflammation; HIF-1; NF-κB; immune reactions

For citation: Dzhalilova D.Sh., Makarova O.V. Molecular-biological mechanisms of connection between hypoxia, inflammatory and immune reactions. Immunologiya. 2019; 40 (5): doi: 10.24411/0206-4952-2019-15011. (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Hashimoto T., Shibasaki F. Hypoxia-Inducible Factor as an angiogenic master switch. Front. Pediatr. 2015; 3: 33.

URL: https://www.ncbi.nlm.nih.gov/pubmed/25964891

doi: 10.3389/fped.2015.00033

2. Ratcliffe P., Koivunen P., Myllyharju J., Ragoussis J., et al. Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics. Hypoxia. 2017; 5: 11-20.

URL: https://www.ncbi.nlm.nih.gov/pubmed/28352643

doi: 10.2147/HP.S127042

3. Chen R., Lai U.H., Zhu L., Singh A., et al. Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front. Cell Dev. Biol. 2018; 6: 132.

URL: https://www.ncbi.nlm.nih.gov/pubmed/30364203

doi: 10.3389/fcell.2018.00132

4. Koyasu S., Kobayashi M., Goto Y., Hiraoka M., et al. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 2018; 109 (3): 560-71.

URL: https://www.ncbi.nlm.nih.gov/pubmed/29285833

doi: 10.1111/cas.13483

5. Watts E.R., Walmsley S.R. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol. Med. 2019; 25 (1): 33-46.

URL: https://www.ncbi.nlm.nih.gov/pubmed/30442494

doi: 10.1016/j.molmed.2018.10.006

6. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992; 12 (12): 5447-54.

7. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA. 1995; 92 (12): 5510-4.

8. Fratantonio D., Cimino F., Speciale A., Virgili F. Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability. Biofactors. 2018; 44 (3): 207-18.

URL: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1159&context=nutritionfacpub

doi: 10.1002/biof.1419

9. Stothers C.L., Luan L., Fensterheim B.A., Bohannon J.K. Hypoxia-inducible factor-1α regulation of myeloid cells. J. Mol. Med. 2018; 96 (12): 1293-306

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292431/

doi: 10.1007/s00109-018-1710-1

10. Ivan M., Kondo K., Yang H., Kim W., et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001; 292 (5516): 464-8.

11. Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001; 292 (5516): 468-72.

12. Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001; 15 (20): 2675-86.

13. Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001; 107 (1): 43-54.

14. Frede S., Stockmann C., Freitag P., Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kB. Biochem. J. 2006; 396 (3): 517-27.

15. Schofield C.J., Zhang, Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 1999; 9 (6): 722-31.

16. Schodel J., Oikonomopoulos S., Ragoussis J., PughC.W., et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011; 117 (23): e207-17.

URL: https://www.ncbi.nlm.nih.gov/pubmed/21447827

doi: 10.1182/blood-2010-10-314427

17. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148 (3): 399-408.

URL: https://www.ncbi.nlm.nih.gov/pubmed/22304911

doi: 10.1016/j.cell.2012.01.021

18. Kletsas D., Pratsinis H., Mariatos G., Zacharatos P., et al. The proinflammatory phenotype of senescent cells: the p53-mediated ICAM-1 expression. Ann. N. Y. Acad. Sci. 2004; 1019: 330-2.

19. Hayden M.S., Ghosh S. NF-kB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012; 26 (3): 203-34.

20. Liu T., Zhang L., Joo D., Sun S.C. NF-kB signaling in inflammation. Signal Transduct. Target. Ther. 2017; 2: e17023.

URL: https://www.ncbi.nlm.nih.gov/pubmed/29158945

doi: 10.1038/sigtrans.2017.23

21. Mitchell S., Vargas J., Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016; 8 (3): 227-41.

URL: https://www.ncbi.nlm.nih.gov/pubmed/26990581

doi: 10.1002/wsbm.1331

22. Ghosh S., May M.J., Kopp E.B. NF-κB and Rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol. 1998; 16: 225-60.

23. Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006; 441 (7092): 431-6.

24. Sakai J., Cammarota E., Wright J.A., Cicuta P., et al. Lipopolysaccharide-induced NF-κB nuclear translocationis primarily dependent on MyD88, but TNFα expressionrequires TRIF and MyD88. Sci. Rep. 2017; 7 (1): 1428.

URL: https://www.ncbi.nlm.nih.gov/pubmed/28469251

doi: 10.1038/s41598-017-01600-y

25. Hirota K. Involvement of hypoxia-inducible factors in the dysregulation of oxygen homeostasis in sepsis. Cardiovasc. Hematol. Disord. Drug Targets. 2015; 15 (1): 29-40.

26. Kiers H.D., Scheffer G.-J., van der Hoeven J.G., Eltzschig H.K., et al. Immunologic Consequences of hypoxia during critical illness. Anesthesiology. 2016; 125 (1): 237-49.

URL: https://www.ncbi.nlm.nih.gov/pubmed/27183167

doi: 10.1097/ALN.0000000000001163

27. Devraj G., Beerlage C., Brune B., Kempf V.A. Hypoxia and HIF-1 activation in bacterial infections. Microbes Infect. 2017; 19 (3): 144-56.

URL: https://www.ncbi.nlm.nih.gov/pubmed/27903434

doi: 10.1016/j.micinf.2016.11.003

28. Eltzschig H.K., Carmeliet P. Hypoxia and inflammation. N. Engl. J. Med. 2011; 364 (7): 656-65.

29. van der Flier M., Stockhammer G., Vonk G.J., Nikkels P.G., et al. Vascular endothelial growth factor in bacterial meningitis: detection in cerebrospinal fluid and localization in postmortem brain. J. Infect. Dis. 2001; 183 (1): 149-53.

URL: https://www.ncbi.nlm.nih.gov/pubmed/11106541

doi: 10.1086/317643

30. Riess T., Andersson S.G.E., Lupas A., Schaller M., et al. Bartonella adhesin a mediates a proangiogenic host cell response. J. Exp. Med. 2004; 200 (10): 1267-78.

URL: https://rupress.org/jem/article/200/10/1267/52512/Bartonella-Adhesin-A-Mediates-a-Proangiogenic-Host

doi: 10.1084/jem.20040500

31. Kempf V.A., Lebiedziejewski M., Alitalo K., Walzlein J.H., et al. Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation. 2005; 111 (8): 1054-62.

URL: https://www.ncbi.nlm.nih.gov/pubmed/15723970

doi: 10.1161/01.CIR.0000155608.07691.B7

32. Charpentier T., Hammami A., Stager S. Hypoxia inducible factor 1α: a critical factor for the immune response to pathogens and Leishmania. Cell. Immunol. 2016; 309: 42-9.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0008874916300478?via%3Dihub

doi: 10.1016/j.cellimm.2016.06.002

33. Schaffer K., Taylor C.T. The impact of hypoxia on bacterial infection. FEBS J. 2015; 282 (12): 2260-6.

34. Rius J., Guma M., Schachtrup C., Akassoglou K., et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008; 453 (7196): 807-11.

URL: https://www.ncbi.nlm.nih.gov/pubmed/18432192

doi: 10.1038/nature06905

35. van Uden P., Kenneth N.S., Rocha S. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem. J. 2008; 412 (3): 477-84.

URL: https://www.ncbi.nlm.nih.gov/pubmed/18393939

doi: 10.1042/BJ20080476

36. van Uden P., Kenneth N.S., Webster R., Muller H.A., et al. Evolutionary conserved regulation of HIF-1beta by NF-kappaB. PLoS Genet. 2011; 7 (1): e1001285.

URL: https://www.ncbi.nlm.nih.gov/pubmed/21298084

doi: 10.1371/journal.pgen.1001285

37. Bonello S., Zahringer C., BelAiba R.S., Djordjevic T., et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler. Thromb. Vasc. Biol. 2007; 27 (4): 755-61.

38. BelAiba R.S., Bonello S., Zahringer C., Schmidt S., et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol. Biol. Cell. 2007; 18 (12): 4691-7.

URL: https://www.ncbi.nlm.nih.gov/pubmed/17898080

doi: 10.1091/mbc.e07-04-0391

39. Nishi K., Oda T., Takabuchi S., Oda S., et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-differentiated cells in a reactive oxygen species-dependent manner. Antioxid. Redox Signal. 2008; 10 (5): 983-95.

URL: https://www.ncbi.nlm.nih.gov/pubmed/18199003

doi: 10.1089/ars.2007.1825

40. Bandarra D., Rocha S. HIF-1α a novel piece in the NF-κB puzzle. Inflamm Cell Signal. 2015; 2: e792.

URL: https://www.researchgate.net/publication/277329952_HIF-1a_a_novel_piece_in_the_NF-kB_puzzle

doi: 10.14800/ics.792

41. Halligan D.N., Murphy S.J.E., Taylor C.T. The hypoxia-inducible factor (HIF) couples immunity with metabolism. Semin. Immunol. 2016; 28 (5): 469-77.

42. Taylor C.T, Colgan S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017; 17 (12): 774-85.

URL: https://www.ncbi.nlm.nih.gov/pubmed/28972206

doi: 10.1038/nri.2017.103

43. Hellwig-Burgel T., Rutkowski K., Metzen E., Fandrey J., et al. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999; 94 (5): 1561-7.

44. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013; 496 (7444): 238-42.

45. Dehne N., Brune B. HIF-1 in the inflammatory microenvironment. Exp. Cell Res. 2009; 315 (11): 1791-7.

46. Jantsch J., Wiese M., Schodel J., Castiglione K., et al. Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α(HIF1A) and result in differential HIF1A-dependent gene expression. J. Leukoc. Biol. 2011; 90 (3): 551-62.

47. Oliver K.M., Taylor C.T., Cummins E.P. Hypoxia. Regulation of NFkappaB signalling during inflammation: the role of hydroxylases. Arthritis Res. Ther. 2009; 11 (1): 215.

URL: https://www.ncbi.nlm.nih.gov/pubmed/19291263

doi: 10.1186/ar2575

48. Kruger B., Krick S., Dhillon N., Lerner S.M., et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl Acad. Sci. USA. 2009; 106 (9): 3390-5.

49. Ferguson N.D., Fan E., Camporota L., Antonelli M., et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012; 38 (10): 1573-82.

50. Suganami T., Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J. Leukoc. Biol. 2010; 88 (1): 33-9.

51. Wang J.S., Liu H.C. Systemic hypoxia enhances bactericidal activities of human polymorphonuclear leuocytes. Clin. Sci. (Lond.). 2009; 116 (11): 805-17.

URL: https://www.ncbi.nlm.nih.gov/pubmed/19053944

doi: 10.1042/CS20080224

52. Fritzenwanger M., Jung C., Goebel B., Lauten A., et al. Impact of short-term systemic hypoxia on phagocytosis, cytokine production, and transcription factor activation in peripheral blood cells. Mediators Inflamm. 2011; 2011: 429501.

URL: https://www.ncbi.nlm.nih.gov/pubmed/21765619

doi: 10.1155/2011/429501

53. Richard N.A., Sahota I.S., Widmer N., Ferguson S., et al. Acute mountain sickness, chemosensitivity and cardio-respiratory responses in humans exposed to hypobaric and normobaric hypoxia. J. Appl. Physiol. 2014; 116 (7): 945-52.

54. Grocott M., Montgomery H., Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit. Care. 2007; 11 (1): 203.

55. Hartmann G., Tschop M., Fischer R., Bidlingmaier C., et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000; 12 (3): 246-52.

56. Cummins E.P., Berra E., Comerford K.M., Ginouves A., et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA. 2006; 103 (48): 18 154-9.

57. Cockman M.E., Lancaster D.E., Stolze I.P., Hewitson K.S., et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA. 2006; 103: 14 767-72.

58. Dzhalilova D.Sh., Kosyreva A.M., Diatroptov M.E., Ponomarenko E.A., et al. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. J Inflamm Res. 2019; 12: 73-86.

59. Walmsley S.R., Print C., Farahi N., Peyssonnaux C., et al. Hypoxia-induced neutrophil survival is mediated by HIF-1alphadependent NF-kappaB activity. J. Exp. Med. 2005; 201 (1): 105-15.

60. Peyssonnaux C., Datta V., Cramer T., Doedens A., et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 2005; 115: 1806-15.

61. Ben-Shoshan J., Afek A., Maysel-Auslender S., Barzelay A., et al. HIF-1alpha overexpression and experimental murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009; 29 (5): 665-70.

URL: https://www.ncbi.nlm.nih.gov/pubmed/19251587

doi: 10.1161/ATVBAHA.108.183319

62. Clambey E.T., McNamee E.N., Westrich J.A., Glover L.E., et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA. 2012; 109 (41): E2784-93.

URL: https://www.ncbi.nlm.nih.gov/pubmed/22988108

doi: 10.1073/pnas.1202366109

63. Campbell E.L., Bruyninckx W.J., Kelly C.J., Glover L.E., et al. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation.Immunity. 2014; 40 (1): 66-77.

URL: https://www.ncbi.nlm.nih.gov/pubmed/24412613

doi: 10.1016/j.immuni.2013.11.020

64. Barbi J., Pardoll D., Pan F. Metabolic control of the Treg/Th17 axis. Immunol. Rev. 2013; 252 (1): 52-77.

URL: https://www.ncbi.nlm.nih.gov/pubmed/23405895

doi: 10.1111/imr.12029

65. Sadiku P., Walmsley S.R. Hypoxia and the regulation of myeloid cell metabolic imprinting: consequences for the inflammatory response. EMBO Rep. 2019; 20 (5): e47388.

URL: https://www.ncbi.nlm.nih.gov/pubmed/30872317

doi: 10.15252/embr.201847388

66. Thompson A.A., Binham J., Plant T., Whyte M.K., et al. Hypoxia, the HIF pathway and neutrophilic inflammatory responses. Biol. Chem. 2013; 394 (4): 471-7.

67. Krzywinska E., Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines. 2018; 6 (2): E56.

URL: https://www.ncbi.nlm.nih.gov/pubmed/29762526

doi: 10.3390/biomedicines6020056

68. Kojima H., Jones B.T., Chen J., Cascalho M., et al.Hypoxia-inducible factor 1alpha-deficient chimeric mice as a model to study abnormal B lymphocyte development and autoimmunity. Methods Enzymol. 2004; 381: 218-29.

69. Hartmann H., Eltzschig H.K., Wurz H., Hantke K., et al. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology. 2008; 134 (3): 756-67.

URL: https://www.ncbi.nlm.nih.gov/pubmed/18325389

doi: 10.1053/j.gastro.2007.12.008

70. Karhausen J., Furuta G.T., Tomaszewski J.E., Johnson R.S., et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 2004; 114 (8): 1098-106.

71. Manresa M.C., Taylor C.T. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell. Mol. Gastroenterol. Hepatol. 2017; 3: 303-15.

72. Sun M., He C., Wu W., Zhou G., et al. Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributesto mucosal homeostasis in inflammatory bowel disease. Clin. Exp. Immunol. 2017; 187 (3): 428-40.

URL: https://www.ncbi.nlm.nih.gov/pubmed/27921309

doi: 10.1111/cei.12896

73. Robinson A., Keely S., Karhausen J., Gerich M.E., et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology. 2008; 134: 145-55.

74. Triner D., Shah Y.M. Hypoxia-inducible factors: a central link between inflammation and cancer. J. Clin. Invest. 2016; 126 (10): 3689-98.

URL: https://www.ncbi.nlm.nih.gov/pubmed/27525434

doi: 10.1172/JCI84430

75. Hirota S.A., Fines K., Ng J., Traboulsi D., et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology. 2010; 139 (1): 259-69.e3.

URL: https://www.ncbi.nlm.nih.gov/pubmed/20347817

doi: 10.1053/j.gastro.2010.03.045

76. Peyssonnaux C., Boutin A.T., Zinkernagel A.S., Datta V., et al. Critical role of HIF-1alpha in keratinocyte defense against bacterial infection. J. Invest. Dermatol. 2008; 128 (8): 1964-8.

77. Schaible B., McClean S., Selfridge A., Broquet A., et al. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS One. 2013; 8 (2): e56491.

URL: https://www.ncbi.nlm.nih.gov/pubmed/23418576

doi: 10.1371/journal.pone.0056491

78. Peyssonnaux C., Cejudo-Martin P., Doedens A., Zinkernagel A.S., et al. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J. Immunol. 2007; 178 (12): 7516-9.

79. Werth N., Beerlage C., Rosenberger C., Yazdi A.S., et al. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One. 2010; 5 (7): e11576.

URL: https://www.ncbi.nlm.nih.gov/pubmed/20644645

doi: 10.1371/journal.pone.0011576

80. Mahabeleshwar G.H., Qureshi M.A., Takami Y., Sharma N., et al. A myeloid hypoxia- inducible factor 1a-Kruppel-like factor 2 pathway regulates gram-positive endotoxin-mediated sepsis. J. Biol. Chem. 2012; 287: 1448-57.

81. Ono S., Tsujimoto H., Hiraki S., Aosasa S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann. Gastroenterol. Surg. 2018; 2 (5): 351-8.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139715/

doi: 10.1002/ags3.12194

82. Textoris J., Beaufils N., Quintana G., Ben Lassoued A., et al. Hypoxia-inducible factor (HIF1a) gene expression in human shock states. Crit. Care. 2012; 16 (4): R120.

URL: https://www.ncbi.nlm.nih.gov/pubmed/22781303

doi: 10.1186/cc11414

83. Pan H., Wu X. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells. Biochem. Biophys. Res. Commun. 2012; 420 (3): 685-91.

84. Kiers H.D., Scheffer G.-J., van der Hoeven J.G., Eltzschig H.K., et al. Immunologic consequences of hypoxia during critical illness. Anesthesiology. 2016; 125 (1): 237-49.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119461/

doi: 10.1097/ALN.0000000000001163

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»