Features of the immune microenvironment in the placenta and gravidar endometrium in mice with spontaneous, induced and potentiated abortions

Abstract

Miscarriage remains an actual public health problem worldwide. Fetal-maternal interaction, in which pro- and anti-inflammatory cytokines are of great importance, determines the outcome of pregnancy. The aim of the study was to perform a comparative assessment of the immune microenvironment in the placenta and gravidar endometrium in various mouse models of pregnancy. The non-abortion-prone ♀CBA×♂Balb/c mating was used for modeling a physiological pregnancy. Spontaneous abortions were reproduced by the abortion-prone ♀CBA×♂DBA/2 mating. Abortions induced or potentiated by an immunostimulant were simulated in ♀CBA×♂BALB/c or CBA×♂DBA/2 matings, respectively, by intraperitoneal injections of muramyl dipeptide β-heptylglycoside (C7MDP) on the 5th and 7th days of gestation. Mice were sacrificed on the 8th day of gestation, then uteroplacental units were isolated. In formalin-fixed, paraffin embedded tissue sections from uteroplacental units, cells producing transforming growth factor-β (TGF-β) and interleukin-10 (IL-10) were immunohistochemically stained, followed by an assessment of their distribution density. In homogenates of uteroplacental units of mice, a low level of IL-1α was observed in the groups of spontaneous and potentiated abortions. In the group of induced abortions, the highest level of IL-5 was observed in comparison with the groups of physiological pregnancy and potentiated abortions. The level of IL-10 was the highest in the group of physiological pregnancy, and the lowest in the group of spontaneous abortions, which corresponded to the density of IL-10+-cells obtained by analysis of immunohistochemical staining. IFN-γ was highest in the physiological pregnancy group and lowest in the spontaneous abortion group. In the group of potentiated abortions, its level increased in comparison with the group of spontaneous abortions. Increased resorption in the induced abortion group occurs against the background of a decrease in IL-10 and an increase in IL-5, and in the potentiated abortion group against a background of an increase in both IL-10 and IFN-γ. Obviously, the abortogenic effect of C7MDP in pregnant mice with initially different levels of embryonic loss is realized with the participation of various immune mechanisms.

Keywords:immune tolerance; cytokines; muramyldipeptide; miscarriage

For citation: Artemyeva K.A., Bogdanova I.M., Stepanova I.I., Boltovskaya M.N., Kalyuzhin O.V., Stepanov A.A., Zemlyakov A.E. Features of the immune microenvironment in the placenta and gravidar endometrium in mice with spontaneous, induced and potentiated abortions. Immunologiya. 2019; 40 (6): 26-33. doi: 10.24411/0206-4952-2019-16004

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Intrauterine development of a person. A guide for doctors. Edited by prof. A.P. Milovanov, prof. S.V. Saveliev. M.: MDV. 2006. (in Russian)

2. Sidelnikova V.M., Sukhikh G.T. Miscarriage: A Guide for Practitioners M.: MIA. 2011. (in Russian)

3. Robertson S.A., Care A.S., Skinner R.J. Interkeukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysac-charide-induced abortion and fetal growth restriction in mice. Biol. Reprod. 2007; 76 (5): 738-48. doi: 10.1095/biolreprod.106.056143

4. Saraiva M., O’Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010; 10 (3): 170-81. doi: 10.1038/nri2711

5. Cheng S.B., Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am. J. Reprod. Immunol. 2015; 73 (6): 487-500. doi: 10.1111/aji.12329

6. Lai Z., Kalkunte S., Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension. 2011; 57 (3): 505-14. doi: 10.1161/HYPERTENSIONAHA.110.163329.

7. SojkaD.K., Huang Y.H., Fowell D.J. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology. 2008; 124 (1): 13-22. doi: 10.1111/j.1365-2567.2008.02813.x

8. Aluvihare V.R., Kallikourdis M., Betz A.G. Tolerance, suppression and the fetal allograft. J. Mol. Med. (Berl). 2005; 83 (2): 88-96. doi: 10.1007/s00109-004-0608-2

9. Shima T., Sasaki Y., Itoh M., NakashimaA., Ishii N., Sugamura K., et al. Regulatore T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 2010; 85 (2): 121-9. doi: 10.1016/j.jri.2010.02.006

10. Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N., et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003; 198 (12): 1875-86. doi: 10.1084/jem.20030152

11. Kwak-Kim J., Park J.C., Ahn H.K., Kim J.W., Gilman-Sachs A. Immunological modes of pregnancy loss. Am. J. Reprod. Immunol. 2010; 63 (6): 611-23. doi: 10.1111/j.1600-0897.2010.00847.x

12. Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 2010; 63 (6): 601-10. doi: 10.1111/j.1600-0897.2010.00852.x.

13. Mor G., Cardenas I. The Immune System in Pregnancy: A Unique Complexity. Am. J. Reprod. Immunol. 2010; 63 (6): 425433. doi: 10.1111/j.1600-0897.2010.00836.x

14. Chen S.J., Liu Y.L., Sytwu H.K. Immunologic Regulation in Pregnancy: From Mechanism to Therapeutic Strategy for Immuno-modulation. Clin. Dev. Immunol. 2012; 2012: 258391. doi: 10.1155/2012/258391

15. Thaxton J.E., Sharma S. Interleukin-10: a multi-faceted agent of pregnancy. Am. J. Reprod. Immunol. 2010; 63 (6): 482-91. doi: 10.1111/j.1600-0897.2010.00810.x

16. Porta C., Riboldi E., Ippolito A., Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin. Immunol. 2015; 27 (4): 237-48. doi: 10.1016/j.smim.2015.10.003

17. Ingman W.V., Jones R.L. Cytokine knockouts in reproduction: the use of gene ablation to dissect roles of cytokines in reproductive biology. Hum. Reprod. Update. 2008; 14 (2): 179-92. doi: 10.1093/humupd/dmm042

18. Nishiura R., Noda N., Minoura H., Toyoda N., Imanaka-Yo-shida K., Sakakura T., Yoshida T. Expression of matrix metalloproteinase-3 in mouse endometrial stromal cells during early pregnancy: regulation by interleukin-1 alpha and tenascin-C. Gynecol. Endocrinol. 2005; 21 (2): 111-8. doi: 10.1080/09513590500168399

19. Deb K., Chaturvedi M.M., Jaiswal Y.K. A ‘minimum dose’ of lipopolysaccharide required for implantation failure: assessment of its effect on the maternal reproductive organs and interleukin-1alpha expression in the mouse. Reproduction. 2004; 128 (1): 87-97. doi: 10.1530/rep.1.00110

20. Kitaya K., Yasuo T., Yamaguchi T., Fushiki S., Honjo H. Genes regulated by interferon-gamma in human uterine microvascular endothelial cells. Int. J. Mol. Med. 2007; 20 (5): 689-97.

21. Murphy S.P, Tayade C., Ashkar A.A., Hatta K., Zhang J., Croy B.A. Interferon Gamma in Successful Pregnancies. Biol. Reprod. 2009; 80 (5): 848-59. doi: 10.1095/biolreprod.108.073353

22. Carter A. M. Animal models of human placentation. Placenta. 2007; 21 (A): 41-47.

23. Kwak-Kim J., Bao S., Lee S.K., Kim J.W., Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am. J. Reprod. Immunol. 2014; 72 (2): 129-40. doi: 10.1111/aji.12234

24. Artemyeva K.A., Boltovskaya M.N., Kalyuzhin O.V. Modeling induced miscarriage in mice using muramyl dipeptide glycoside. Kursk scientific and practical bulletin «Man and his health.» 2012; 2: 34-39. (In Russian)

25. Hedl M., Abraham C. Distinct roles for Nod2 protein and autocrine interleukin-1 beta in muramyl dipeptide-induced mitogen-activated protein kinase activation and cytokine secretion in human macrophages. J. Biol. Chem. 2011; 286 (30): 26440-9. doi: 10.1074/jbc.M111.237495

26. Kusumoto S., Fukase K., Shiba T. Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: Chemical synthesis and functional studies. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2010; 86 (4): 322-337.

27. Inohara N., Ogura Y., Fontalba A., Gutierrez O., Pons F., Crespo J. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem. 2003; 278 (8): 5509-12. doi: 10.1074/jbc.C200673200

28. Athie-Morales V, O’Connor G.M., Gardiner C.M. Activation of Human NK Cells by the Bacterial Pathogen-Associated Molecular Pattern Muramyl Dipeptide. The Journal of Immunology. 2008; 180 (6): 4082-89. doi: 10.4049/jimmunol.180.6.4082

29. Kalyuzhin O.V., Kalina N.G., Bashtanenko A.F., Shkalev M.V., Kuzovlev F.N., Kalyuzhin V.V. Stimulation of mouse resistance to bacterial infection with muramyl dipeptide glycosides. Bull. Exp. Biol. Honey. 2003; 135 (5): 531-5. (in Russian)

30. Kalyuzhin O.V., Zemlyakov A.E., Kalina N.G., Mulik E.L., Kuzovlev F.N., Makarova O.V. Biological activity of anomeric pairs of lipophilic glycosides of N-acetylmuramyl-Lalanin-Disoglutamine. Bul. Exp. Biol. Med. 2008; 145 (5): 561-4. (in Russian)

31. Hirota S.A., Ng J., Lueng A., Khajah M., Parhar K., Li Y., et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm. Bowel. Dis. 2011; 17 (6): 1359-72. doi: 10.1002/ibd.21478

32. Matsui K., Ikeda R. Peptidoglycan in combination with mu-ramyldipeptide synergistically induces an interleukin-10-dependent T helper 2-dominant immune response. MicrobiolImmunol. 2014; 58 (4): 260-5. doi: 10.1111/1348-0421.12139

33. Kotani S., Tsujimoto M., Koga T., Nagao S., Tanaka A., Kawata S. Chemical structure and biological activity relationship of bacterial cell walls and muramyl peptides. Fed. Proc. 1986; 45 (11): 2534-40.

34. Abrahams V.M. The role of the Nod-like receptor family in trophoblast innate immune responses. J. Reprod. Immunol. 2011; 88 (2): 112-7. doi: 10.1016/j.jri.2010.12.003

35. Costello M.J., Joyce S.K., Abrahams V.M. NOD protein expression and function in first trimester trophoblast cells. Am. J. Re-prod. Immunol. 2007; 57(1):67-80. DOI: 10.1111/j.1600-0897.2006.00447.x

36. Clark D.A., Chaouat G., Banwatt D., Friebe A., Arck P.C. Ecology of danger-dependent cytokine-boosted spontaneous abortion in the CBA x DBA/2 mouse model: II. Fecal LPS levels in colonies with different basal abortion rates. Am. J. Reprod. Immunol. 2008; 60 (6): 529-933. doi: 10.1111/j.1600-0897.2008.00652.x

37. Zemlyakov A.E., Tsikalov VV, Kalyuzhin O.V. Synthesis and study of the effect of the configuration of the glycosidic bond and the nature of aglycon on the immunostimulating activity of muramoyl dipeptide glycosides. Physiologically active substances. 2002; 1: 35-38. (in Russian)

38. Du M.R., Dong L., Zhou W.H. Yan F.T., Li D.J. Cyclosporin A improves pregnancy outcome by promoting functions of trophoblasts and inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in the mouse. Biol. Reprod. 2007; 76 (5): 906-14. doi: 10.1095/biolreprod.106.056648

39. Chaouat G., Menu E., Clark D.A., Dy M., Minkowski M., Wegmann T.G. Control of fetal survival in CBA x DBA / 2 mice by lymphokine therapy. J. Reprod. Fertil. 1990; 89 (2): 447-58.

40. Artemyeva K.A., Boltovskaya M.N., Kalyuzhin O.V. Modeling of induced miscarriage in mice using the muramyl dipeptide glycoside. Kursk Scientific and Practical Bull. Man and his Health. 2012; 2: 34-9. (in Russian)

41. Albieri A., Hoshida M.S., Gagioti S.M., Leanza E.C., Abraha-msohn I., Croy A. et al. Interferon-gamma alters the phagocytic activity of the mouse trophoblast. Reprod. Biol. Endocrinol. 2005; 3: 34. doi: 10.1186/1477-7827-3-34

42. Moreli J.B., Ruocco A.M.C., Vernini J.M., Rudge M.V.C., Calderon I.M.P. Interleukin 10 and Tumor Necrosis Factor-Alpha in Pregnancy: Aspects of Interest in Clinical Obstetrics ISRN. Obstet. Gynecol. 2012; 2012: 230742 doi: 10.5402/2012/230742

43. Zenclussen M.L., Thuere C., Ahmad N., Wafula P.O., Fest S., Teles A., et al. The persistence of paternal antigens in the maternal body is involved in regulatory T-cell expansion and fetal-maternal tolerance in murine pregnancy. Am J. Reprod. Immunol. 2010; 63 (3): 200-8. doi: 10.1111/j.1600-0897.2009.00793.x

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»