The role of the mitochondrial pore in the effector functions of human neutrophils

Abstract

Introduction. Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes in the inflammatory foci. However, excessive NETosis or diminished NET clearance is engaged in the pathogenesis of numerous autoimmune and inflammatory disorders. The initiation of NETosis after recognition of pathogens by specific receptors is mediated by an increase in the intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered as semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by enzymatic complex NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS) or without any ROS in general.

Material and methods. A wide inhibitor analysis has been used in our work, as well as luminol-amplified chemiluminescence assay and fluorescence detection of neutrophil extracellular traps.

Results. Using mitochondria-targeted antioxidant SkQ1, we confirmed that mtROS are involved in the oxidative burst and NET formation activated by A23187, but not a powerful activator of protein kinase C PMA. At the same time, using specific inhibitors of NADPH oxidase, we showed that ROS produced by this enzymatic complex are also involved in NETosis induced by A23187. Application of specific inhibitors of mitochondrial pore (mPTP), allowed us to demonstrate for the first time that mPTP is involved in signal transduction from mitochondria to NADPH oxidase, in mtROS production, NETosis and the oxidative burst induced byA23187.

Conclusion. We assume that the interplay between two sources of ROS, NADPH oxidase and mitochondria, is triggered by Ca2+ influx, so that mtROS contribute to NETosis either directly or by stimulating NADPH oxidase. One of the possible physiological mechanisms mediating Ca2+-dependent increase in mtROS production may be associated with the opening of the mitochondrial permeability transition pore mPTP, a multicomponent protein complex located in the mitochondrial membrane. Excessive NETs formation or a decrease in the organism’s ability to eliminate them can cause the development of autoimmune diseases. NETs are also involved in the development of lung diseases. Therefore, understanding the signaling pathways of NET formation is extremely important for finding ways to combat these diseases.

Keywords:human neutrophils; oxidative burst; reactive oxygen species; neutrophil extracellular traps; mitochondrial permeability transition pore; mPTP

For citation: Vorobjeva N.V., Kondratenko I.V., Vakhlyarskaya S.S., Chernyak B.V., Pinegin B.V. The role of the mitochondrial pore in the effector functions of human neutrophils. Immunologiya. 2019; 41 (1): 42-53. DOI: 10.33029/ 0206-4952-2020-41-1-42-53 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Takei H., Araki A., Watanabe H., Ichinose A., Sendo F. Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J. Leukoc. Biol. 1996; 59 (2): 229–40.

2. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303: 1532–35.

3. Vorobjeva N.V., Pinegin B.V. Neutrophil Extracellular Traps: mechanisms of formation and role in health and disease. Biochemistry (Moscow). 2014; 79 (12): 1286–96. (in Russian)

4. Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE. 2007; 379: pe11.

5. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018; 18 (2): 134–47. DOI: 10.1038/nri.2017.105

6. Wang Y., Li M., Stadler S., Correll S., Li P., Wang D., et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell. Biol. 2009; 184 (2): 205–13. DOI: 10.1083/jcb.200806072

7. Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun.Rev. 2015; 14 (7): 633–40. DOI: 10.1016/j.autrev.2015.03.002

8. Behnen M., Leschczyk C., Möller S., Batel T., Klinger M., Solbach W., et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. 2014; 193 (4): 1954–65. DOI: 10.4049/jimmunol.1400478

9. Garcia-Romo G.S., Caielli S., Vega B., Connolly J., Allantaz F., Xu Z., et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 2011; 3 (73): 73ra20. DOI: 10.1126/scitranslmed.3001201

10. Keshari R.S., Jyoti A., Dubey M., Kothari N., Kohli M., Bogra J., et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012; 7 (10): e48111. DOI: 10.1371/journal.pone.0048111

11. Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245): 316–20. DOI: 10.1126/science.aaa8064

12. Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. U. S. A. 2015; 112 (9): 2817–22. DOI: 10.1073/pnas.1414055112

13. van der Linden M., Westerlaken G.H.A., van der Vlist M., van Montfrans J., Meyaard L. Differential Signalling and Kinetics of Neutrophil Extracellular Trap Release Revealed by Quantitative Live Imaging. Sci. Rep. 2017; 7 (1): 6529. DOI: 10.1038/s41598-017-06901-w

14. Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017; 6: pii: e24437. DOI: 10.7554/eLife.24437

15. Doughan A.K., Harrison D.G., Dikalov S.I. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res. 2008; 102: 488–96. DOI: 10.1161/CIRCRESAHA.107.162800

16. Dikalova A.E., Bikineyeva A.T., Budzyn K., Nazarewicz R.R., McCann L., Lewis W., et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ. Res. 2010; 107: 106–16. DOI: 10.1161/CIRCRESAHA.109.214601

17. Vorobjeva N., Prikhodko A., Galkin I., Pletjushkina O., Zinovkin R., Sud'ina G., et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur. J. Cell. Biol. 2017; 96 (3): 254–65. DOI: 10.1016/j.ejcb.2017.03.003

18. Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 1979a; 195 (2): 453–9. DOI: 10.1016/0003-9861(79)90371-0

19. Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch. Biochem. Biophys. 1979b; 195 (2): 468–77. DOI: 10.1016/0003-9861(79)90373-4

20. Haworth R.A., Hunter D.R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 1979; 195: 460–7. DOI: 10.1016/0003-9861(79)90372-2

21. Bernardi P., Rasola A., Forte M., Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol. Rev. 2015; 95 (4): 1111–55. DOI: 10.1152/physrev.00001.2015

22. Halestrap A.P. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 2009; 46 (6): 821–31. DOI: 10.1016/j.yjmcc.2009.02.021

23. Halestrap A.P., Richardson A.P. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 2015; 78: 129–41. DOI: 10.1016/j.yjmcc.2014.08.018

24. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014; 94 (3): 909–50. DOI: 10.1152/physrev.00026.2013

25. Giorgio V., Guo L., Bassot C., Petronilli V., Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell. Calcium. 2018; 70: 56–63. DOI: 10.1016/j.ceca.2017.05.004

26. Elrod J.W., Molkentin J.D. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circ. J. 2013; 77 (5): 1111–22.

27. Vorobjeva N.V., Kulakov V.V., Kozachenko Y.V., Pinegin B.V. Effects of the antioxidants Trolox, Tiron and Tempol on neutrophil extracellular trap formation. Immunologiya. 2016; 37 (3): 143–9. (in Russian)

28. Vorobjeva N.V. The NADPH oxidase of neutrophils and diseases associated with its dysfunction. Immunologiya. 2013; 34 (4): 232–8. (in Russian)

29. Sundqvist M., Christenson K., Björnsdottir H., Osla V., Karlsson A., Dahlgren C., et al. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes. Front. Immunol. 2017; 8: 1828. DOI: 10.3389/fimmu.2017.01828

30. Griffiths E.J., Halestrap A.P. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem. J. 1995; 307: 93–8. DOI: 10.1042/bj3070093

31. Crabtree G.R. Calcium, calcineurin, and the control of transcription. J. Biol. Chem. 2001; 276 (4): 2313–16.

32. Kurokawa T., Nonami T., Kobayashi H., Kishimoto W., Uchida K., Takagi H., et al. Inhibition by cyclosporine of the production of superoxide radicals. N. Engl. J. Med. 1992; 326 (12): 840.

33. Nguyen N.S., Pulido S.M., Rüegg U.T. Biphasic effects of cyclosporin A on formyl-methionyl-leucyl-phenylalanine stimulated responses in HL-60 cells differentiated into neutrophils. Br. J. Pharmacol. 1998; 124 (8): 1774–80.

34. Thorat S.P., Thatte U.M., Pai N., Dahanukar S.A. Inhibition of phagocytes by cyclosporin in vitro. Q. J. Med. 1994; 87 (5): 311–4.

35. Halestrap A.P., Davidson A.M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem. J. 1990; 268 (1): 153–60. DOI: 10.1042/bj2680153

36. Rathore R., Zheng Y.M., Niu C.F., Liu Q.H., Korde A., Ho Y.S., Wang Y.X. Hypoxia activates NADPH oxidase to increase [ROS]iand [Ca2+]I through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic. Biol. Med. 2008; 45: 1223–31. DOI: 10.1016/j.freeradbiomed.2008.06.012

37. Pinegin B., Vorobjeva N., Pashenkov M., Chernyak B. The role of mitochondrial ROS in antibacterial immunity. J. Cell Physiol. 2018; 233: 3745–54. DOI: 10.1002/jcp.26117

38. El Jamali A., Valente A.J., Clark R.A. Regulation of phagocyte NADPHoxidase by hydrogen peroxide through a Ca(2+)/c-Abl signaling pathway. Free Radic. Biol. Med. 2010; 48: 798–810. DOI: 10.1016/j.freeradbiomed.2009.12.018

39. Kröller-Schön S., Steven S., Kossmann S., Scholz A., Daub S., Oelze M., Xia N., Hausding M., Mikhed Y., Zinssius E., Mader M., Stamm P., Treiber N., Scharffetter-Kochanek K., Li H., Schulz E., Wenzel P., Münzel T., Daiber A. Molecularmechanisms of the crosstalk between mitochondria and NADPH oxidase through reactiveoxygen species-studies in white blood cells and in animalmodels. Antioxid. Redox Signal. 2014; 20: 247–66. DOI: 10.1089/ars.2012.4953

40. Nazarewicz R.R., Dikalova A.E., Bikineyeva A., Dikalov S.I. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2013; 305: H1131–40. DOI: 10.1152/ajpheart.00063.2013

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»