Immunopathogenic properties of SARS-CoV-2 as a basis for the choice of pathogenetic therapy

Abstract

In the context of the pandemic caused by the new SARS-CoV-2 coronavirus, due to the lack of population immunity and vaccines, strict epidemic measures are the only way to slow the spread of infection, but in the case of spread of COVID-19 in the absence of effective ethiotropic therapy - an adequate, full-fledged response of the immune system. Analysis of scientific data shows that the outcome of COVID-19 depends on the activity of non-specific immune response in the infectious-inflammatory process. It is assumed that with the disclosure of the immunopathogenesis of the disease, the tactics of treating patients, especially old patients with physiological aging of the immune system, may change. The possible use of a potential immunotropic drug for complex treatment of patients with COVID-19 is theoretically substantiated.

Keywords:SARS-CoV-2; immune system; immunotherapy; COVID-19

For citation: Kostinov M.P. Immunopathogenic properties of SARS-CoV-2 as a basis for the choice of pathogenetic therapy. Immunologiya. 2019; 41 (1): 83-91. DOI: 10.33029/0206-4952-2020-41-1-83-91 (in Russian)

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

References

1. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4): 621-5.

2. Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol. 2015;109:14.12.1-14.12.10.

3. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004; 5(7):730-7.28.

4. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006 May 4;441(7089):101-5.

5. Satoh T., Kato H., Kumagai Y., Yoneyama M., Sato S., Matsushita K., Tsujimura T., Fujita T., Akira S., Takeuchi O. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses (англ.) // Proceedings of the National Academy of Sciences of the United States of America. journal. 2010 Jan; 107(4): 1512-7. Doi: 10.1073/pnas.0912986107

6. Taniguchi T, Takaoka A. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol. 2002 Feb;14(1):111-6.

7. Baron S, Tyring SK, Fleischmann WR, Coppenhaver DH, Niesel DW, Klimpel GR, et al. The interferons. Mechanisms of action and clinical applications. JAMA. 1991 Sep 11;266(10):1375-83.

8. Dua, D.; Yadav, M.; Jetley, P.; Dua, R. Covid-19: Immunological Lessons from Bats, Pangolins and Old Coronaviruses; And How We Can Apply Them in a Timely Way for a Better Outcome. Preprints 2020, 2020040071 (doi: 10.20944/preprints202004.0071.v1)https://www.preprints.org/manuscript/202004.0071/v1

9. Zhou P, Cowled C, Mansell A, Monaghan P, Green D, Wu L, et al. IRF7 in the Australian black flying fox, Pteropus alecto: evidence for a unique expression pattern and functional conservation. PLoS ONE. 2014;9(8):e103875.

10. Zhou P, Tachedjian M, Wynne JW, Boyd V, Cui J, Smith I, et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci USA. 2016 Mar 8;113(10):2696-701.

11. Barnes B. J. Adrover J.M, Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine. 2020;217(6). pii: e20200652. Doi: 10.1084/jem.20200652

12. Banerjee, A., Rapin, N., Bollinger, T. et al. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 7, 2232 (2017).

13. Ahn M, Anderson DE, Zhang Q, Tan CW, Lim BL, Luko K, et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat Microbiol. 2019 05;4(5):789-99.

14. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio. 2013 Aug 13;4(4):e00524-13.

15. Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol. 2004 Sep;78(18):9977-86.

16. Stertz S, Reichelt M, Spiegel M, Kuri T, Martínez-Sobrido L, García-Sastre A, et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology. 2007 May 10;361(2):304-15.

17. Chen, Yu & Cai, Hui & Pan, Ji'an & Xiang, Nian & Tien, Po & Ahola, Tero & Guo, Deyin. (2009). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America. 106. 3484-9. 10.1073/pnas.0808790106.

18. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, et al. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2'O)-methyltransferase activity. J Virol. 2008 Aug;82(16):8071-84.

19. Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 2008 Apr;133(1):13-9.

20. Thevarajan, I., Nguyen, T., Koutsakos, M., Druce, J., Caly, L., van de Sandt, C. E., Jia X., Nicholson, S., Catton, M., Cowie, B., Tong, S., Lewin, S. R., & Kedzierska, K. (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine, 1–3. Advance online publication.

21. Bialek S, Boundy E, Bowen V, Chow N, Cohn A, Dowling N, et al. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-6.

22. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 10.1001/jama.2020.1585.

23. Ginaldi L. De Martinis M, D'Ostilio A., et al. The immune system in the elderly Immunologic research. 1999; 20(3): 117-26.

24. Splunter M, Perdijk O, Fick-Brinkhof H. et al. Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women //PloS one. 2019; 14 (12): e0225825. Doi: 10.1371/journal.pone.0225825. eCollection 2019.

25. Fulop T, Larbi A, Wikby A et al. Dysregulation of T-Cell Function in the Elderly: scientific basis and clinical implications. Drugs & aging. 2005; 22(7): 589-603.

26. Valiathan R., Ashman M., Asthana D. Effects of ageing on the immune system: infants to elderly //Scandinavian journal of immunology. 2016; 83(4):255-66.

27. Koch S. Larbi A, Derhovanessian E. et al. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people //Immunity & Ageing. 2008; 5(1): 6.

28. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015 Dec 22;282(1821):20143085.

29. Temporary guidelines for the prevention, diagnosis and treatment of new coronavirus infection (COVID-19), Ministry of health of the Russian Federation. Version 5 (08.04.2020). (in Russian)

30. Zhonghua Shao Shang Za Zhi. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. 2020 Mar 1;36(0):E005. doi: 10.3760/cma.j.cn501120-20200224-00088. [Epub ahead of print]. [Chen C1, Zhang XR1, Ju ZY2, He WF1. Article in Chinese; Abstract available in Chinese from the publisher].

31. Hamada H, Bassity E, Flies A, et al. Multiple redundant effector mechanisms of CD8+ T cells protect against influenza infection. J Immunol, 2013, 190(1):296-306. DOI: 10.4049/jimmunol.1200571.

32. Zhou YG, Fu BQ, Zheng XH, et al. Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. biorxiv,2020[2020-02-24]. https://www.biorxiv.org/content/10.1101/2020.02.12.945576v1.[published online ahead of print Feb 20, 2020].DOI: 10.1101/2020.02.12.945576.

33. Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol, 2012, 12(4):295-305. DOI: 10.1038/nri3166.

34. Waffarn EE, Baumgarth N. Protective B cell responses to flu--no fluke!. J Immunol, 2011, 186(7):3823-3829. DOI: 10.4049/jimmunol.1002090.

35. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4):783-801.DOI: 10.1016/j.cell.2006.02.015.

36. Hashimoto Y, Moki T, Takizawa T, et al. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol, 2007, 178(4):2448-2457. DOI: 10.4049/jimmunol.178.4.2448.

37. Betakova T, Kostrabova A, Lachova V, et al. Cytokines induced during influenza virus infection. Curr Pharm Des, 2017, 23(18):2616-2622. DOI: 10.2174/1381612823666170316123736.

38. Iwasaki A, Pillai PS. Innate immunity to influenza virus infection[J]. Nat Rev Immunol, 2014, 14(5):315-328.DOI: 10.1038/nri3665.

39. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science, 2010, 327(5963):291-295.DOI: 10.1126/science.1183021.

40. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med,2020[2020-02-24]. https://pubmed.ncbi.nlm.nih.gov/31995857.[published online ahead of print Jan 29, 2020]. DOI: 10.1056/NEJMoa2001316.

41. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA.2020[2020-02-24]. https://pubmed.ncbi.nlm.nih.gov/32031570.[published online ahead of print Feb 7, 2020].DOI: 10.1001/jama.2020.1585.

42. Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223):507-513. DOI: 10.1016/S0140-6736(20)30211-7.

43. Alexia C., Сren M., Louis-Plence P., Vo D.N., et al. Polyoxidinium® activates cytotoxic lymphocyte responses through Dendritic Cell maturation: clinical effects in breast cancer //Frontiers in Immunology. 2019;10: 2693.

44. Talaev V.Yu. Matveichev A.V., Zaichenko I.E., Talaeva M.V., Babaykina O.N., Voronina E.V. vaccine adjuvant "Polyoxidonium ® " strengthens the immune response to a low dose of influenza antigens //. Scientific provision of anti-epidemic protection of the population: current problems and solutions. Collection. scientific proceedings of the all-Russian scientific and practical conference with international participation, dedicated to the 100th anniversary of the name of academician I.N. Blokhin of Rospotrebnadzor. 2019:363-365. URL: https://www.elibrary.ru/item.asp?id=39471103 (in Russian)

45. Pinegin B.V., Dagil Yu.A., Vorobyeva N.V., Paschenkov M.V. The Influence of azoximer bromide on the formation of extracellular neutrophil traps, Rossiyskiy meditsinskiy zhurnal. 2019; 1 (II): 42-6. (in Russian)

46. Karaulov A.V., Gorelov A.V. Application of azoximer bromide in the treatment of infectious and inflammatory diseases of the respiratory system in children: meta-analysis of controlled clinical studies. Zhurnal infektologii. 2019;11(4): 31-41. https://doi.org/10.22625/2072-6732-2019-11-4-31-41 (in Russian)

47. Sokolova T. M., Poloskov V. V., Shuvalov A. N. Vaccines "Grippol" and "Vaxigrip" activators of gene expression of the innate immune system in cells of acute monocytic leukemia TNR1. Evraziyskiy soyuz uchenykh. 2016; 5(26): 61-3. (in Russian)

48. Sokolova T.M., Shuvalov A.N., Shapoval I.M., Kostinov M.P. Vaccines "Grippol" and "Influvak" - inducers of genes of factors of innate and adaptive immunity in human blood cells. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2014;5:37-43. URL: https://www.elibrary.ru/item.asp?id=23947249 (in Russian)

49. Sokolova T.M., Shuvalov A.N., Poloskov V.V. Shapoval I.M., Kostinov M.P. Stimulation of signal receptor gene expression and induction of cytokine synthesis in human blood cells under the action of the drug "sodium Ribonucleate" and its combinations with influenza vaccines in vitro. Molekularnaya meditsina. 2015;1:12-17. URL: https://www.elibrary.ru/item.asp?id=23005990 (in Russian)

50. Kostinov M.P., Akhmatova N.K., Khromova E.A., Skhodova S.A., Stolpnikova V.N., Cherdantsev A.P. et al. The impact of adjuvanted and non-adjuvanted influenza vaccines on the innate and adaptive immunity effectors. IntechOpen book series. Infectious diseases, volume 1. Influenza. Therapeutics and challenges. Edited by Shailendra K. Saxena.2018. Chapter 5: 83-109. http://dx.doi.org/10.5772/intechopen.71939.

51. Khromova E.A., Akhmatova E.A., Skhodova S.A., Semochkin I.A., Khomenkov V.G., Akhmatova N.K., et al. The effect of influenza vaccines on blood dendritic cell subpopulations. Zurnal mikrobiologii, epidemiologii i immunobiologii. 2016; 5: 23-8. (in Russian)

52. Mavzyutova G.A., Mukhamadieva L.R., Fazlyeva R.M, Mirsaeva G.Kh., Tyurina E.B. Rational immunocorrection in complex therapy of community-acquired pneumonia. Meditsynskiy sovet. 2015;16:68-73 (in Russian)

53. Illek Ya.Yu., Galanina A.V., Zaytseva G.A. Effectiveness of Polyoxidonium in severe pneumonia in young children. Terra Medica Nova. 2005; 3: 12-4.

54. Averkiev V.L., Tarasenko V.S., Latysheva T.V., Averkieva L.V. Correction of immunological disorders in patients with pancreonecrosis. Immunologiya. 2002; 23(6): 359-63. (in Russian)

55. Plehanov A.N., Reshetnikov D.I. Immunologic aspects acute pancreatitis. «Siberian Medical Journal (Irkutsk)» 2006; 63(5): 14-8. (in Russian)

56. Borovkova N. V., Ermolov A. S., Khvatov V. B. Characteristics of the inductive phase of the immune response in patients with severe acute pancreatitis. Immunologiya. 2009; 30 (4): 209-13. (in Russian)

57. Gavrilyuk V.P., Konoplya A.I. influence of immunomodulatory drugs on the course of appendicular peritonitis in children. Detskaya khirurgiya. 2012; 4: 368. (in Russian)

58. Gordinskaya N.A., Pylaeva S.I., Sidorkin V.G., et al. Influence of Polyoxidonium on the level of intoxication in burn patients. Immunologiya. 2002; 6: 363-5. (in Russian)

59. Luss L.V. Role and place of immunomodulatory therapy in the treatment of infectious and inflammatory diseases occurring against the background of secondary immune insufficiency. Meditsynskiy sovet. 2013; 11: 78 – 80. (in Russian)

60. Masternak Yu.A., Luss L.V. Influence of Polyoxidonium on indicators of the immune status of elderly people. Immunologiya. 2002; 6: 343-5. (in Russian)

61. Parakhonskiy A.P. Clinical and immunological characteristics of immune insufficiency in elderly people and its correction. Sovremennye naukoemkie tekhnologii 2008;7:89-90. URL: http://top-technologies.ru/ru/article/view?id=24073 (in Russian)

62. Serbin A.S., Fomichev E.V., Afanasieva O.Yu. Gumilevskiy B.Yu. Studied the immune status of elderly patients with odontogenic phlegm of the maxillofacial region against the background of immunocorrection therapy. Meditsinskiy alfavit (Stomatologiya). 2016;2(9): 65 – 7. (in Russian)

63. https://standardnepostupy.sk/_files/200000421-45c4245c44/COVID-19%20hospitalizovan%C3%AD%20pacientiv%20nad%2065%20rokov%20-%20lie%C4%8Dba%20-%20infekcne%20oddelenia%20verzia%202.0.pdf.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)


JOURNALS of «GEOTAR-Media»